Balazs Kégl
Guy Lapalme (Eds.)

Advances in
Artificial Intelligence

18th Conference of the Canadian Society
for Computational Studies of Intelligence, Canadian Al 2005
Victoria, Canada, May 2005, Proceedings

LNAI 3501

@ Springer

Lecture Notes in Artificial Intelligence 3501
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Balazs Kégl Guy Lapalme (Eds.)

Advances 1n
Artificial Intelligence

18th Conference of the Canadian Society
for Computational Studies of Intelligence, Canadian Al 2005

Victoria, Canada, May 9-11, 2005
Proceedings

@ Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Baldzs Kégl

Guy Lapalme

Université de Montréal

Département d’informatique et de recherche opérationelle
CP 6128 succ. Centre-Ville, Montréal, Canada H3C 3J7
E-mail: {kegl;lapalme } @iro.umontreal.ca

Library of Congress Control Number: 2005925178

CR Subject Classification (1998): 1.2

ISSN 0302-9743
ISBN-10 3-540-25864-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25864-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11424918 06/3142 543210

Preface

The 18th conference of the Canadian Society for the Computational Study of
Intelligence (CSCSI) continued the success of its predecessors. This set of pa-
pers reflects the diversity of the Canadian Al community and its international
partners.

AT 2005 attracted 135 high-quality submissions: 64 from Canada and 71 from
around the world. Of these, eight were written in French. All submitted papers
were thoroughly reviewed by at least three members of the Program Committee.
A total of 30 contributions, accepted as long papers, and 19 as short papers are
included in this volume.

We invited three distinguished researchers to give talks about their current
research interests: Eric Brill from Microsoft Research, Craig Boutilier from the
University of Toronto, and Henry Krautz from the University of Washington.

The organization of such a successful conference benefited from the collab-
oration of many individuals. Foremost, we would like to express our apprecia-
tion to the Program Committee members and external referees, who provided
timely and significant reviews. To manage the submission and reviewing process
we used the Paperdyne system, which was developed by Dirk Peters. We owe
special thanks to Kellogg Booth and Tricia d’Entremont for handling the local
arrangements and registration. We also thank Bruce Spencer and members of the
CSCSI executive for all their efforts in making AT 2005 a successful conference.

May 2005 Balézs Kégl and Guy Lapalme

Préface

La diz-huitieme édition de la conférence de la Société canadienne pour l’étude
de Uintelligence par ordinateur (SCEIO) poursuit la longue tradition de succés
des ses prédécesseurs. Cet ensemble d’articles est un témoignage a la diversité
des intéréts des chercheurs canadiens et internationauz.

Al 2005 a suscité 135 soumissions de haute qualité: 64 du Canada et 71
d’ailleurs dans le monde. 8 de ces articles ont €té soumis en frangais. Tous les
articles ont €té relus et annotés par au moins trois membres du comité de pro-
gramme. 30 contributions, acceptés comme articles longs, et 19 comme articles
courts sont inclus dans ce livre.

Nous avons invité trois chercheurs réputés a venir présenter leurs intéréts de
recherche actuels: Eric Brill de Microsoft Research, Craig Boutilier de I’Université
de Toronto et Henry Krautz de I’Université de Washington.

L’organisation de cette conférence a profité de la collaboration de plusieurs
personnes. Tout d’abord, nous remercions le comité de programme et les arbitres
externes qui ont retourné des commentaires motivés et étoffés a lintérieur de
délais tres courts. Pour la gestion des contributions et des commentaires, nous
avons utilisé le systeme Paperdyne développé par Dirk Peters. Nous remercions
spécialement Kellogg Booth and Tricia d’Entremont pour la gestion locale de
la conférence et de ’enregistrement. Nous remercions également Bruce Spencer
et les autres membres de lexécutif de la SCIAEIO pour leurs efforts et leur
collaboration pour le succés de AI 2005.

Mai 2005 Baldzs Kégl et Guy Lapalme

Organization

AI 2005 was organized by the Canadian Society for the Computational Studies of
Intelligence (Société Canadienne pour ’Etude de I'Intelligence par Ordinateur).

Executive Committee

Program Co-chairs:

Baldzs Kégl and Guy Lapalme (Université de

Montréal)

Local Organizers:

Kellogg Booth and Tricia d’Entremont

(University of British Columbia)

Program Committee

Esma Aimeur (U. de Montréal)
Caroline Barriere (NRC)

Sabine Bergler (Concordia U.)
Michael Buro (U. of Alberta)
Cory Butz (U. of Regina)
Laurence Capus (U. Laval)
Brahim Chaib-draa (U. Laval)
Yllias Chali (U. of Lethbridge)
David Chiu (U. of Guelph)

Robin Cohen (U. of Waterloo)
Cristina Conati (U. of BC)

Lyne Da Sylva (U. de Montréal)
Douglas D. Dankel (U. of Florida)
Jim Delgrande (Simon Fraser U.)
Jorg Denzinger (U. of Calgary)
Chrysanne DiMarco (U. of Waterloo)
Douglas Eck (U. de Montréal)
George Foster (NRC)

Richard Frost (U. of Windsor)
Scott Goodwin (U. of Windsor)
Jim Greer (U. of Saskatchewan)
Howard Hamilton (U. of Regina)
Bill Havens (Simon Fraser U.)
Graeme Hirst (U. of Toronto)
Diana Inkpen (U. d’Ottawa)
Nathalie Japkowicz (U. d’Ottawa)

Froduald Kabanza (U. de Sherbrooke)
Greg Kondrak (U. of Alberta)

Leila Kosseim (Concordia U.)
Stefan C. Kremer (U. of Guelph)
Luc Lamontagne (U. Laval)
Philippe Langlais (U. de Montréal)
Bernard Lefebvre (UQaM)

Omid Madani (U. of Alberta)

Choh Man Teng (U. of West Florida)
Stan Matwin (U. of Ottawa)

Gord McCalla (U. of Saskatchewan)
Bob Mercer (U. of Western Ontario)
Evangelos Milios (Dalhousie U.)
Guy Mineau (U. Laval)

Martin Miller (U. of Alberta)

Eric Neufeld (U. of Saskatchewan)
Alioune Ngom (U. of Windsor)
Jian-Yun Nie (U. de Montréal)
Roger Nkambou (UQaM)

Simon Parsons (MIT)

Gerald Penn (U. of Toronto)

Petra Perner (Ibai Leipzig)

Fred Popowich (Simon Fraser U.)
Robert Reynolds (Wayne State U.)
Luis Rueda (U. of Windsor)

Anoop Sarkar (Simon Fraser U.)

X Organization

Abdul Sattar (Griffth U.)

Weiming Shen (NRC)

Bruce Spencer (NRC and UNB)
Stan Szpakowicz (U. of Ottawa)
Ahmed Tawfik (U. of Windsor)
Nicole Tourigny (U. Laval)

Andre Trudel (Acadia U.)

Peter van Beek (U. of Waterloo)
Julita Vassileva (U. of Saskatchewan)

Shaojun Wang (U. of Alberta)
Kay Wiese (Simon Fraser U.)

Michael Wong (U. of Regina)
Dan Wu (U. of Windsor)
Yang Xiang (U. of Guelph)

Yiyu Yao (U. of Regina)
Jia You (U. of Alberta)

Herna Viktor (U. d’Ottawa)

Additional Reviewers

Mohamed Aoun-allah

Philippe Besnard
David Billington
Narjes Boufaden
Li Cheng
Michael Cheng
Bistra Dilkina
Lei Duan

Al Fedoruk

Joel Fenwick

Jie Gao

Yongshen Gao
Ligiang Geng
Edward Glen
Baohua Gu
Jasmine Hamdan
Qi Hao

Malcolm Heywood
Zina Ibrahim
Kamran Karimi
Sehl Mellouli
Andrei Missine

Sponsoring Institutions

Hong Zhang (U. of Alberta)
Nur Zincir-Heywood (Dalhousie U.)

Milan Mosny
Jagdeep Poonian
Stuart Seyman
Tarek Sherif
Zhongmin Shi
Pascal Soucy
Herbert Tsang
Wendy Wang
Haiyi Zhang
Lingzhong Zhou

Canadian Society for the Computational Studies of Intelligence
Société Canadienne pour ’Etude de ’Intelligence par Ordinateur

Table of Contents

Agents

Dynamic Maps in Monte Carlo Localization
Adam Milstein

Handling Over-Constrained Problems in Distributed Multi-agent
Systems
Lingzhong Zhou, Abdul Sattar, Scott Goodwin

Performance Evaluation of an Agent Based Distributed Data Mining
System
Sung Baik, Ju Cho, Jerzy Bala

Adjusting the Autonomy of Collections of Agents in Multiagent Systems
Michael Y.K. Cheng, Chris Micacchi, Robin Cohen

ARES 2: A Tool for Evaluating Cooperative and Competitive
Multi-agent Systems
Jorg Denzinger, Jordan Kidney

Multiagent Systems Viewed as Distributed Scheduling Systems:
Methodology and Experiments
Sébastien Paquet, Nicolas Bernier, Brahim Chaib-draa..............

Planning for a Mobile Robot to Attend a Conference
FEric Beaudry, Froduald Kabanza, Francois Michaud

Constraint Satisfaction and Search

A Decision Theoretic Meta-reasoner for Constraint Optimization
Jingfang Zheng, Michael C. Horsch i,

Heuristic Search Applied to Abstract Combat Games
Alexander Kovarsky, Michael Buroc.cccviiiininen ..

Modelling an Academic Curriculum Plan as a Mixed-Initiative
Constraint Satisfaction Problem
Kun Wu, William S. Havenso i,

XII Table of Contents

SWAMI: Searching the Web Using Agents with Mobility and Intelligence
Mark Kilfoil, Ali Ghorbani 91

Queuing Local Solutions in Distributed Constraint Satisfaction Systems
Ronnie Mueller, William S. Havenso, 103

Data Mining

A Bayesian Model to Smooth Telepointer Jitter
Jeff Long, Michael C. Horsch 108

A Comparative Study of Two Density-Based Spatial Clustering
Algorithms for Very Large Datasets

Xin Wang, Howard J. Hamilton 120
A Markov Model for Inventory Level Optimization in Supply-Chain
Management

Scott Buffett 133

Analysis and Classification of Strategies in Electronic Negotiations
Marina Sokolova, Stan Szpakowicz 145

Fast Protein Superfamily Classification Using Principal Component
Null Space Analysis
Leon French, Alioune Ngom, Luis Rueda 158

First Steps Towards Incremental Diagnosis of Discrete-Event Systems
Alban Grastien, Marie-Odile Cordier, Christine Largouét 170

Integrating Web Content Clustering into Web Log Association Rule
Mining

Jiayun Guo, Viado Keselj, Qigang Gao oo, 182
Privacy Compliance Enforcement in Email

Quintin Armour, William FElazmeh, Nour El-Kadri,
Nathalie Japkowicz, Stan Matwin 194

Towards an Ontology-Based Spatial Clustering Framework
Xin Wang, Howard J. Hamilton 205

Moving Target Prediction Using Evolutionary Algorithms
Sung Baik, Jerzy Bala, Ali Hadjarian, Peter Pachowicz, Ran Baik ... 217

Multi Class Adult Image Classification Using Neural Networks
Wonil Kim, Han-Ku Lee, Jinman Park, Kyoungro Yoon 222

Table of Contents

Probability and Equality: A Probabilistic Model of Identity Uncertainty
Rita Sharma, David Poole i,

Knowledge Representation and Reasoning

A Logic of Inductive Implication or Artificial Intelligence Meets
Philosophy of Science 11
Ricardo S. Silvestre, Tarcisio H.C. Pequeno

Knowledge Distribution in Large Organizations Using Defeasible Logic
Programming
Carlos I. Chesrievar, Ramdn F. Brena, Jose L. Aguirre

On the Role of the Markov Condition in Causal Reasoning
Eric Neufeld, Sonje Kristtorn,

Machine Learning

Impact of Feature Extraction on the Performance of a Classifier: kNN,
Naive Bayes and C4.5
Mykola Pechenizkiyo i

Instance Cloning Local Naive Bayes
Liangziao Jiang, Harry Zhang, Jiang Su

Comparing Dimension Reduction Techniques for Document Clustering
Bin Tang, Michael Shepherd, Malcolm I. Heywood, Xiao Luo

Incorporating Evidence in Bayesian Networks with the Select Operator
Cory J. Butz, F. Fang i

Quick Spatial Outliers Detecting with Random Sampling
Tiangiang Huang, Xiaolin Qin, Qinmin Wang, Chongcheng Chen

Natural Language

A Document Browsing Tool: Using Lexical Classes to Convey
Information
Lyne Da Sylva, Frédéric Doll...........,

A Supervised Learning Approach to Acronym Identification
David Nadeau, Peter D. Turney,

XIII

302

X1V Table of Contents

Adjectives: A Uniform Semantic Approach
Nabil Abdullah, Richard A. Frost......... ..o, 330

Automatic Acquisition of Gender Information for Anaphora Resolution
Shane Bergsmac.o v 342

Automatic Identification of Parallel Documents With Light or Without
Linguistic Resources
Alexandre Patry, Philippe Langlais 354

Inductive Improvement of Part-of-Speech Tagging and Its Effect on a
Terminology of Molecular Biology

Ahmed Amrani, Mathieu Roche, Ywves Kodratoff,

Oriane Matte-Tailliez e 366

Vocabulary Completion Through Word Cooccurrence Analysis Using
Unlabeled Documents for Text Categorization
Simon Réhel, Guy W. Mineau oo, 377

Voting Between Multiple Data Representations for Text Chunking
Hong Shen, Anoop Sarkar 389

A Novel Use of VXML to Construct a Speech Browser for a
Public-Domain SpeechWeb
Li Su, Richard A. Frost....... i 401

Arabic Speech Synthesis Using a Concatenation of Polyphones: The
Results
Tahar Saidane, Mounir Zrigui, Mohamed Ben Ahmed 406

English to Chinese Translation of Prepositions
Hui Li, Nathalie Japkowicz, Caroline Barriere 412

Generating Adaptive Multimedia Presentations Based on a Semiotic
Framework

Osama FEl Demerdash, Sabine Bergler, Leila Kosseim,

PE Langshaw 417

Producing Headline Summaries for Newspaper Articles
Yilias Chali, Maheedhar Kolla 0 iiiiiiinini.. 422

Regularized Classifiers for Information Retrieval
Abderrezak Brahmi, Ahmed Ech-Cherif 427

Table of Contents

Rethinking Language Models Within the Framework of Dynamic
Bayesian Networks
Murat Deviren, Khalid Daoudi, Kamel Smaili

Reinforcement Learning

Error Bounds in Reinforcement Learning Policy Evaluation
Fletcher Lu oo e e e

Real-Time Decision Making for Large POMDPs
Sébastien Paquet, Ludovic Tobin, Brahim Chaib-draa

Author Index

XV

Dynamic Maps in Monte Carlo Localization

Adam Milstein

School of Computer Science, University of Waterloo,
200 University Ave W., Waterloo, ON, N2L 3Gl
ahpmilst@cs.uwaterloo.ca

Abstract. Mobile robot localization is the problem of tracking a moving robot
through an environment given inaccurate sensor data and knowledge of the
robot’s motion. Monte Carlo Localization (MCL) is a popular probabilistic
method of solving the localization problem. By using a Bayesian formulation
of the problem, the robot’s belief is represented by a set of weighted samples
and updated according to motion and sensor information. One problem with
MCL is that it requires a static map of the environment. While it is robust to
errors in the map, they necessarily make the results less accurate. This article
presents a method for updating the map dynamically during the process of
localization, without requiring a severe increase in running time. Ordinarily, if
the environment changes, the map must be recreated with user input. With the
approach described here, it is possible for the robot to dynamically update the
map without requiring user intervention or a significant amount of processing.

1 Introduction

In order for a mobile robot to accomplish anything in the world, it must know its own
location and be able to determine the results of its motion. Localization is the name
given to the problem of tracking a mobile robot given a map of the environment and
the robot’s sensor readings. If the robot’s sensors worked perfectly, localization
would be an easy task, since the odometers would give the exact location. The
problem is that no sensor is perfect and the errors in odometer readings may be large.
Another common sensor for a robot to have is some kind of range sensor. Sonars and
laser rangefinders are two popular devices for localization. These sensors report the
distance to the nearest wall but, like the odometers, they are prone to errors.
Localization is the problem of compensating for the errors in odometry and sensor
data in order to accurately determine the robot’s location.

One solution to localization uses particle filters to represent the robot’s location.
The particle filter approach is known as Monte Carlo Localization (MCL) [3]. One
problem with MCL is that it requires a static map of the environment. Sensor readings
are compared with the expected values from the map and the comparison generates the
probability of the robot’s location. Errors in the map are partially compensated for by
increasing the error that is assumed for the sensors. Another way to compensate for
map errors is that the number of correct sensor readings will probably overrule incorrect
ones. However, because MCL combines sensor error and map error, as map error

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 1-12, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 A. Milstein

increases, the allowable sensor error decreases until finally the algorithm fails and the
map must be rescanned. Each error in the map is usually a minor matter for a localized
robot; it is the combination of minor errors that can cause problems.

A localized robot rarely becomes mislocalized due to map errors, but this is not
true of global localization, where the robot’s initial location is unknown. Especially
in symmetric environments, global localization can easily fail due to minor map errors
that would be ignored by a localized robot.

The approach described in this article is based on the idea that if a robot is
localized it may reasonably expect its sensor data to reflect the environment. If that is
the case, then it should be possible to update the map according to the sensor data. If
a known error in the map is fixed, then the robot will have a greater ability to deal
with any subsequent errors. Since global localization may depend heavily on minor
features, having an updated map can be a great benefit.

2 Background

2.1 Recursive Bayes Filter

Monte Carlo Localization is an implementation of a recursive Bayes filter. It
estimates the posterior distribution of robot poses as conditioned by the sensor data.
The key assumption is the Markovian assumption that, given the present, past and
future are independent. In terms of localization, it means that if the current location of
the robot is known, its future location does not depend on where it has been.
Although this may not be completely true, it is a reasonable assumption to make.

Bayes filtering estimates the belief, which is the probability over the state space as
conditioned by the data. This posterior is represented as:

Bel(x,) = p(x, 12,2, ey Zgs Uy Uy _yseens U) M

X, 1s the location at time t, z, is the sensor data at time t and u, is the motion data at
time t. Sensor data is usually some form of range data, such as laser rangefinder data,
while motion data is the robot’s odometry readings from time t — 1 until time t.

Given the definition in (1), MCL uses a recursive Bayes filter to determine Bel(x,).
In order to determine something recursively we need a recursive formula. Let a' =
ay,...,a, then equation (1) is converted using Bayes rule, the Markovian assumption,
and integration into:

Bel(x) =1p(z, 1) p(x, 13,)pCx 127 ™) @

where h is a normalizer constant.

Obviously, p(xt_llu"l,z"l) is Bel(x..), the prior belief of the robot’s location, so we
have our recursive equation. p(XJu,X.;) is the motion model. It represents the
probability of moving to a specific location given the prior location and the motion
reported by the odometers. Finally, p(zlx,) is the sensor model, representing the
probability of receiving a specific sensor reading given the robot’s position in the
environment. These two models are determined by the hardware of the robot and an
approximation must be created experimentally.

Dynamic Maps in Monte Carlo Localization 3

2.2 Particle Approximation

Although equation (2) allows us to calculate Bel(x,), it is not as straightforward as it
appears. The difficulty is that in the localization problem, the state space is
continuous. Therefore the integral in equation (2) is over a continuous space and so
there is no simple way to calculate it. In MCL the continuous state space is
approximated by a set of weighted particles. Bel(x,) = {xtm,wlm}izle. Each x[m is a
sample of the random variable while the w,"! values are the importance factor, or
weight, of the sample. As N approaches infinity the approximation becomes Bel(x,).
Let X, be a set of particles representing the state at time t. MCL creates X, from X,
by choosing random members of X,.; and moving them according to p(xl XHm, u). A
new weight is calculated for each particle and then the whole set is resampled by
randomly drawing particles, with replacement, according to their weight. Resampling
replaces the weight with the number of particles at a particular location. The higher
the weight of a particle, the more times it will occur in X;. The number of particles
representing likely locations for the robot will increase and then in the motion step,
the robot will not be lost. More detail on MCL can be found in [6].

One problem with the particle approximation is that, as an approximation, it
introduces error. In particular, because there are not an infinite number of particles,
some locations of low probability die out and are no longer considered in the
algorithm. If the robot is really at one of these locations it can never be found.

2.3 Raytracing

Calculation of p(z/ x,) involves determining the probability of receiving a particular
sensor reading given the location in the environment. For a laser rangefinder the
readings are distance measurements. A common map implementation for MCL is an
occupancy grid map with each cell holding the probability that it is occupied. Given
a robot’s possible location in the map, the expected distance to the wall is usually
determined by raytracing from the robot to the nearest wall. The sensors determine
the actual distance to the wall and, once the two values are known, the probability can
be calculated either mathematically or by a table lookup.

3 Dynamic Maps

In order to alter the map, it needs to be added to the MCL formula. Consider each
cell of the map to be an independent object, which can be either present or absent.
Although independence is usually not entirely valid, it is an assumption that is often

made. Consider y, = {y;,...,yk.} the set of individual cells in the map. Since we are
considering these cells to be independent, if the location is known, then p(y, Ix.,z,) =
[p(yxd xz).

With this background, the new state equation is p(y;,X{|z,u;). Unfortunately, it turns
out that this equation cannot be factored, since the map state is not fully determined
with only the current location. However, notice that each sample in MCL represents
not only a current location, but also the history of locations that lead to that location.

4 A. Milstein

Since each particle is only moved according to the motion model, they may be
considered as x' instead of x, with no change to the algorithm. If we use the equation
p(y,x'Iz',u"), then it is possible to factor it and we can also use the MCL algorithm
without significant changes. The factorization used is similar to the one in [2], which
was used to add the state of doors into the MCL algorithm.

3.1 Factoring

The size of the state space of (y,x') is exponential in the size of y,, so we need some
way of factoring the posterior in order to reduce the state space.
First, Bayes rule and the Markovian property give us:

Py, x 12 u)y=np(z, 1y, x)p(y, 1 x', 27 u)p(x 1 27u"y G

Now, consider the 3 parts of equation (3).
Without any data we assume that all states are equally likely, and also that the
probability of a random sensor scan is a constant. Therefore:

“)

Ly =Py 12)p(z)

p(z, | x
t ' p(yt’x[)

=n'p(x, 1) Py, 1 %,02)
k

Remembering that cells in the map change status independently in the model, and
again using the Markovian assumption, we get:

p(y, | xt’ Zt_l’ut) = H Zp(ykt I yk,t—l)p(yk,t—l | xt_l ’ Zt_l’ut_l) (5)
L
Finally:
P 127U = p(x, L u) p(xX 1 2 ©®

Recombining these three equations and simplifying we get the factorization:
p(y.x' 12 u) = p(x' 1 2 O[] p(yy, 1 ¥ 2" uh))
k

which contains the original MCL posterior and a new probability for the cells in the
map. See [2] for more details about the factorization.

3.2 Binary Object Bayes Filtering

Since the method for calculating p(x'lz',u’) is already known in the MCL algorithm,
the only new method needed is to calculate the probability of each cell in the map.
These cells are binary objects since they are either present or absent. Each yy, can be
either 0 or 1 with the probability of each summing to 1. Thus the method for
calculating the probabilities is the same as in [2]. Let m = p(yx = 1Ix',z,u"). Then

p(yk’,=1|x,,z,)p(z,|x’) + (8)
Py =D p(zlx' 2y TR

k.t

Dynamic Maps in Monte Carlo Localization 5

Where

ﬂ.lj,f = p(yk,r = 1' yk,r—l = 1)7Z-k,z—l + p(yk,z = 1' yk,r—l = 0)(1_7Z-k,z—l) (9)

In equation (8) the only unknown probability is p(zlx',z"",u") in the denominator.

Rather than trying to calculate it, we exploit the fact that yy is binary so (1 — my) can
be calculated in the same way as my, using yy, = O instead of yy, = 1. The two
equations are then divided to cancel the unknown quantities.

Ty s _ p(yk’,=1|x,,zt) 1_P(yk,1:1) ”/:r,t (10)

-7 ,) — l=pOy,=lx.z) pOy,=D xp,

The result, equation (10), consists entirely of known quantities. p(yy=1) is the
prior probability that a cell is occupied. The various p(yk.lykx.1) values are the
transition probabilities for a cell, my ., are, of course, the prior occupancy probabilities
and finally, p(yk.ilX.z,) is the probability of occupancy given robot location and
sensor data. To get a useful value from the odds ratio, we use the equality my, =1 — (1
+ Ml (1 - me)

The representation of m is actually in closed form, so it requires only a constant
time operation to calculate. Since p(yx=1Ix,,z;) involves sensor values and raytraces
which are already used for MCL, little additional processing should be required. It is
possible to modify the importance factor, as in [2], to take into account the new map
data, where each cell is not merely present or absent but has a probability of presence.
Using this data results in a runtime increase at least logarithmic in the number of
binary objects. The probability of a location becomes the sum of the probabilities of
that location for both states of all visible objects, multiplied by the probability of the
object states. While that is acceptable if there are only a small number of objects,
such as doors, if the objects are the cells of a map, the number becomes
unmanageable. However, most map data used for MCL is actually represented as
probabilities in an occupancy grid map, but is thresholded to be either present or
absent. I decided to use the same simplification for my algorithm and consider each
cell as either present or absent depending on a threshold value on its probability. The
processing time therefore remains unchanged, since the importance factor is
calculated in the same way.

3.3 Cell Correlations

In order to perform the factorization, it is necessary to assume that map cells change
independently of each other. However, this assumption is not entirely accurate. In
fact, groups of adjacent cells that represent the same objects are likely to be
completely dependent. To some extent, ordinary MCL also assumes cells are
independent, but it only becomes relevant when the cell probabilities are changed in
dynamic MCL. It is easy to model correlations by annotating the map with
correlation probabilities between adjacent cells, however, using this information is
more difficult. Methods such as loopy belief propagation or variational methods [11]
can propagate belief through a connected graph, but they are time consuming and
sometimes do not converge. Since dynamic MCL must run in real time without being

6 A. Milstein

much slower than ordinary MCL, these techniques are not sufficient. However, it
should be noticed that the cell correlations in a map are of restricted types. Small
groups of adjacent cells are highly correlated, while being uncorrelated with their
neighbors. Because of the limited correlation, it is possible to use a modified
variational technique in order to implement cell correlations. When a cell is updated,
the update is propagated to adjacent cells along the links, but the propagation is not
permitted to flow back to a cell that has already been modified. Also, the flow stops
when the accumulated correlation probability falls below a threshold. In practice,
only a few steps occur, but these achieve a significant improvement in the results.

The key to using cell correlations is to perform operations using two different and
conflicting sets of assumptions. Each set of assumptions reduces one part of the
problem to a solvable operation, but makes the other part intractable. We have
already seen that, by assuming cells to be independent, we can factor the belief as:

p(y,x" 1z u")= p(x'l z’,u’)Hp(ykJ I x',z"u") an
k

This factorization is used to update the individual cells according to the robot’s
sensors. However, once the update is performed, we discard both the assumption and
the resulting factorization. Instead, we assume that each cell depends on its neighbors
and is independent of the robot’s sensors and position. According to this set of
assumptions:

p(y.x" 1z u")y= p(x" 12 u") p(y,, 1 x', 2", u") (12)
=px"12u")p(y,)
= p('xt | Zt ’ ut)H p(yk,t I ykfup,t’ yk*down,t yk*le_ﬁ,t ykfright,t)

k

The determination of the robot’s position is unchanged, but the map cells now
depend on their neighbors and not on the robot. By making this assumption, any
changes made to the map can be propagated to the adjacent cells and the weight of the
cell correlations adjusted. Separating the algorithm into two phases with different
assumptions allows the algorithm to consider additional dependencies without having
to deal with the intractable problems caused by the interaction of the new
dependencies with the old. In effect, during the first phase of the algorithm, as
represented by equation (11), we assume that cells are influenced only by the robot,
with additional effects coming from some unknown source. During the second phase,
shown by equation (12), we assume that cells are only affected by their neighbors,
with other changes caused by external, unconsidered forces. Of course, two sets of
contradictory assumptions cannot possibly be a reflection of reality, however, each
assumption is a reasonable simplification and using both sets iteratively results in less
simplification than either set exclusively.

In dynamic MCL, it is necessary to modify the cell correlation probabilities
dynamically on each cycle. However, given the nature of the sensors used, it is
unlikely that adjacent map cells will be observed on a single scan. The solution to the
problem is to cache observed changes to each cell until an adjacent cell has also been
observed. At that point, the difference in the changes of the cells can be used to
adjust the correlation between them.

Dynamic Maps in Monte Carlo Localization 7

Adding cell correlations significantly improves the dynamic MCL algorithm, since
a correlated group of cells can change together whenever any member of the group is
observed. The result is that, although the update of individual cells must be slow to
allow localization to work, if a group of cells change, they will update very quickly,
since each observation will correlate them, and as they become more correlated, every
observation of a member of the group will update the entire group. Thus, an object
can appear or vanish more quickly than any single cell.

4 Algorithm

The preceding formulae can be used to augment an implementation of MCL in order
to modify the map dynamically during processing. The MCL algorithm must raytrace
along all sensor paths to calculate the probability of a particle. However, if the
robot’s position is known with high probability, then any differences between the
sensor reading and the raytrace are more likely to be errors in the map than in the
sensors. In that case, the logical action is to correct the map.

The method I used is to consider each cell of the map to be present with probability
M. On each step of the MCL algorithm, an augmented raytracer is used for the
robot’s most likely location. The augmented raytracer follows a ray normally,
passing through each map cell along the ray. However, at each cell along the path,
the probability of that cell is altered according to equation (10). Although the
augmented raytracer could be run on all samples, it is more productive to determine
the most likely location and use the augmented raytracer only on it. When the robot’s
location is not known, the new raytracer is not used.

For calculating the sensor probability of each cell, the simplifying assumption that
either that cell or the existing wall is correct is used. The assumption is necessary
because the normalizer for the sensor probabilities is not known, so some method
must be used to normalize the values. In practice, when a new cell becomes
occupied, it exceeds the threshold before any other cell, and then the assumption
becomes valid again. The short period during which it is invalid for some cells does
not affect the operation of the algorithm.

In order to find the robot’s most likely location, the sample with the highest
importance factor is used. Other locations are possible, including the weighted
average of all samples. The algorithm cannot run if the robot’s location is unknown.

These implementation details do not change the fundamental algorithm, which is
an implementation of MCL together with the binary object formulae as described
above. The only simplification to equation (10) is in the calculation of p(yy, = 1Ix,,2,),
a value which is at best a numerical approximation to the error in a physical sensor
device.

The following pseudocode summarizes the algorithm for dynamic MCL.

Repeat N times

Draw a random particle

Move particle according to the motion model

Annotate particle with a weight from the sensor model
Resample a new set of particles from the annotated set
Find the most probable location (mean of particles)
For each sensor reading

8 A. Milstein

Raytrace to the nearest occupied cell
For each cell on the path
Alter the occupancy probability of the cell
Alter the occupancy probability of neighboring
cells according to influence
Mark cell as observed
If neighboring cell marked observed
Adjust influence between cells
Unmark cells as observed

5 Results

The dynamic map algorithm was implemented and tested using real data collected in
our building. The data was created using a Pioneer 2Dxe robot equipped with a laser
rangefinder. The objective of the tests was to show that the map could be updated
correctly without introducing errors or causing localization to fail. Since the
algorithm has an almost constant runtime there is no tradeoff necessary between the
time required to update the map and the benefit obtained by doing so.

Fig. 1. Before and after two passes through the environment

Figure 1 shows the map of the environment used to generate the test data. Changes
were made to the environment after the map was scanned by opening and closing
doors and by placing boxes in the corridors. After one pass through the changed
environment the robot has mostly added the new features to the map and has
correlated the changed objects, allowing them to be completed very quickly.

After two passes, all changes have been completely added to the map. The rate of
update is slower than in [2] because each cell must be observed several times, instead
of each object. However, without correlations it takes at least five passes to
completely adapt the map. Allowing cells to become correlated permits much faster
updating without compromising localization. In [2] the dynamic objects can be

Dynamic Maps in Monte Carlo Localization 9

updated in a single pass because they are manually defined ahead of time and are
known to be completely correlated. Since dynamic MCL has no predefined objects or
correlations, it is necessarily slower, but because it can discover the correlations it can
still update very quickly.

Fig. 2. Before and after five passes through the environment using a schematic map

Another test, shown in figure 2, was to use the same data but starting with a map
consisting of the minimum possible information. From a schematic map consisting of
only the walls and partitions, the algorithm was able to adapt it with all the features
that were missing. Those portions of the map that were observed were corrected
properly. The benefit of being able to start with a limited map is that it may not be
necessary to scan a map manually with a robot. Instead, the map could be entered
using blueprints of the environment and, as the robot passed through, it could correct
the map until it was accurate. Usually, MCL uses the most accurate map possible,
since it will lose accuracy over time, but with a dynamic map the accuracy of the map
increases as the robot traverses the environment. Of course, portions of the
environment that were insufficiently observed were not completely added to the map,
so the result is not identical to the environment. However, observed areas have
become more accurate and the map will only become a better reflection of the
environment as the robot traverses it over time.

Another feature noticeable in figure 2 is that some of the objects in the corridor are
somewhat more diffuse than they appeared in figure 1. Since the map is less accurate
to begin with, localization is necessarily less accurate. As the map is corrected and
localization becomes better, the location of the objects becomes clearer. After five
passes, the objects are almost completely defined in the map, but some of them
obviously require several more passes to full correct them. The benefit of dynamic
MCL is that the robot can operate independently of this process. As it performs its
task, the map becomes more accurate. All other data files tested exhibited similar
behaviour, with the observed portions of objects being added to the map and no new
errors introduced.

10 A. Milstein

6 Related Work

Related work in dynamic mapping for MCL involves identifying binary objects, such
as doors, and tracking their status using similar probabilistic methods [2]. There are
several benefits of having explicit objects. Since an object consists of multiple cells
that have the same probability, each scan provides more information about the object,
allowing its state to be altered more quickly. Also, since most of the map is not
dynamic, the probability of objects can be changed much more rapidly, since changes
in the objects probably will not be able to change the map to make an invalid location
match the sensors. However, explicit objects need to be manually defined before
execution, adding to the work of defining maps. Since objects are binary, either
present or absent, a moving object must be represented explicitly by creating a binary
object at each possible location. With the dynamic maps described here, an object
can appear anywhere without user interference. Finally, the method in [2] involves a
different importance factor, which increases the runtime logarithmically in the
number of objects.

Members of a set of algorithms for simultaneous localization and mapping
(SLAM) have the ability to localize the robot and generate the map simultaneously in
real time [5]. These algorithms are meant to dynamically alter the map in the same
way as my dynamic map MCL. Many of these methods use an algorithm which is
guaranteed to converge to a correct solution. However, they suffer from the data
association problem. On every sensor scan it must be possible to uniquely identify
which feature of the map is responsible for each sensor reading. If this is impossible,
then the guarantee of correctness does not hold. SLAM does not discover and use cell
correlations, so the rate of update is slower if the map changes, since each cell must
be considered independently. Further, SLAM involves significantly more processing
than MCL, using up computing power that may not be necessary, especially after the
map is generated. Dynamic map MCL was created specifically to provide an
accurately changing map without incurring any significant overhead. Since it is a
constant time addition to MCL, the map can be updated without requiring any more
computing power than ordinary localization. Of course, the map cannot be generated
from nothing as it can with SLAM, but once the map exists it can be kept up to date
almost without cost. SLAM also, in common with ordinary MCL, makes the
assumption that the map is static. Over time, the algorithm becomes more certain of
the map and any changes will take longer to appear. Dynamic MCL explicitly makes
the assumption that the map will change.

Algorithms that consider dynamic environments typically assume a static map with
dynamic elements, such as people, which must be eliminated from consideration. In
effect, these algorithms assume a static map but allow an additional form of sensor
noise in the form of moving people. [13] describes a method for creating a map,
using standard EM SLAM techniques, which can discover the static map of the
environment despite dynamic elements. Similarly, [12] gives an algorithm for using
MCL in an environment with many moving objects. Although both these papers give
a method for handling a dynamic environment, they both assume an underlying static
map. The benefit of dynamic MCL is that the static map assumption is no longer
necessary. As the algorithm runs, it changes the map to correspond to the
environment. Since dynamic MCL is implemented as an augmentation to ordinary

Dynamic Maps in Monte Carlo Localization 11

MCL, there is no reason that other augmentations could not be used if warranted by
the problem. For example, the algorithm described in [12] to discard readings relating
to dynamic objects during MCL can coexist with my algorithm for modifying the map
in accordance with changes in the environment. Dynamic MCL allows fundamental
changes to be accounted for, as opposed to merely ephemeral objects that are only
observed once.

7 Conclusions and Future Work

This paper describes an augmentation to MCL which allows the map to be updated
according to the sensor measurements of a localized robot without a serious increase
in running time. By considering each cell of the map to be an independent binary
object and by making some simplifying assumptions, the static map required by MCL
can be modified dynamically without requiring any user intervention. Instead of
becoming less accurate over time, the map becomes more accurate as the robot
traverses the environment. Experiments with real datasets show that the map can be
updated properly without introducing errors. A change in the environment can be
reflected in the map after very few passes by the robot. Since the map is not updated
incorrectly and the running time is minimal, there is no drawback to using dynamic
map techniques as an addition to ordinary MCL. However, the result of the
algorithm, having an accurate map, will always benefit the accuracy of MCL.

Future work will involve calculating the rate of change of various cells so that
more rapid updating of changing objects in the map is possible. It might be possible
to generate a graph of important locations in the map marked with transitions between
them. Then, when the map was updated, the graph could be modified as well,
providing a high level abstraction that could be used for planning under uncertainty.

References

1. A. Milstein, J. Sanchez, and E.Williamson. Robust global localization using clustered
particle filtering. In AAAI-02.

2. D. Avots, E. Lim, R. Thibaux, and S. Thrun. A probabilistic technique for simultaneous
localization and door state estimation with mobile robots in dynamic environments. In
TROS-2002.

3. Thrun, S. 2000. Probabilistic Algorithms in Robotics. School of Computer Science,
Carnegie Mellon University. Pittsburgh, PA.

4. Thrun, S.; Montemerlo, M.; and Whittaker, W. 2002. Conditional Particle filters for
Simultaneous Mobile Robot Localization and People-Tracking. Forthcoming.

5. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to
the simultaneous localization and mapping problem. In AAAI-02.

6. Thrun, S.; Fox, D.; Burgard, W.; and Dellaert, F. 2001. Robust Monte Carlo Localization
for Mobile Robots. Artificial Intelligence Magazine.

7. JLiu and R. Chen. 1998. Sequential monte carlo methods for dynamic systems.
Journal of the American Statistical Association 93:1032-1044.

8. Borenstein, J.; Everett, B.; and Feng, L. 1996. Navigating Mobile Robots: Systems and
Techniques. A.K. Peters, Ltd. Wellesley, MA.

10.
11.

12.

13.

A. Milstein

Thrun, S.; Fox, D.; and Burgard, W. 2000. Monte Carlo Localization with Mixture
Proposal Distribution. In Proceedings of the AAAI National Conference on Artificial
Intelligence, Austin, TX.

Thrun, S.; Particle Filters in Robotics. In Proceedings of Uncertainty in Al 2002.

M. L Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. In M. 1. Jordan (Ed.); An
introduction to variational methods for graphical models. Learning in Graphical Models,
Cambridge: MIT Press, 1999.

Fox, D.; Burgard, W. and Thrun, S.; Markov Localization for Mobile Robots in Dynamic
Environments. In Journal of Artificial Intelligence Research, 1999.

Hihnel, D.; Triebel, R.; Burgard, W. and Thrun, S.; Map building with mobile robots in
dynamic environments. In ICRA, 2003.

Handling Over-Constrained Problems in
Distributed Multi-agent Systems

Lingzhong Zhou', Abdul Sattar!, and Scott Goodwin?

! Institute for Integrated and Intelligent Systems,
Griffith University, Brisbane, Australia
{1.zhou, a.sattar}@griffith.edu.au
2 School of Computer Science, University of Windsor, Canada
sgoodwin@uwindsor.ca

Abstract. The distributed constraint satisfaction problem is a general
framework used to represent problems in distributed multi-agent sys-
tems. In this paper, we describe a detailed investigation of handling
over-constrained satisfaction problems in a dynamic and multi-agent en-
vironment. We introduce a new algorithm, Over-constrained Dynamic
Agent Ordering, that treats under and over-constrained problems uni-
formly. While the existing approaches generally only consider a single
variable per agent, the proposed algorithm can handle multiple variables
per agent. In this approach, we use the degree of unsatisfiability as a
measure for relaxing constraints, and hence as a way to guide the search
towards the best possible solution(s). Through an experimental study,
we demonstrate that our algorithm performs better than the one based
on asynchronous weak commitment search.

1 Introduction

A constraint satisfaction problem (CSP) consists of a finite number of variables,
each having a finite and discrete set of possible values, and a set of constraints
over the variables. A solution to a CSP is an instantiation of all variables for
which all the constraints are satisfied. When the variables and constraints of a
CSP are distributed among a set of autonomous and communicating agents, this
can be formulated as a distributed constraint satisfaction problem (DCSP). A
DCSP framework can naturally represent problems in distributed multi-agent
systems. A solution to a DCSP is an instantiation of variables that satisfies all
constraints among the agents in the problem.

Often, many real world problems lead to CSPs that cannot be solved, because
there is no consistent instantiation of variables that satisfies all constraints.
These problems are known as over-constrained satisfaction problems [1]. In a
distributed multi-agent environment, we refer to such problems as distributed
over-constrained satisfaction problems (DOCSPs). In recent years, there have
been a few attempts to address DOCSPs, namely, distributed partial constraint
satisfaction problem framework (DPCSPs) and distributed maximal constraint

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 13-24, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

14 L. Zhou, A. Sattar, and S. Goodwin

satisfaction problem framework (DMCSP) by [2]; the distributed hierarchical
constraint satisfaction problem framework (DHCSPs) by [3]; distributed con-
straint optimization problems (DCOPs) [8]; asynchronous distributed optimiza-
tion (Adopt) [6]; and optimal asynchronous partial overlay (OptAPO) [4]. All
of these approaches are based on an assumption that each agent has a single
variable. While it can be argued that multiple variable problems can be reduced
to single variables with tupled domains, in many realistic problems this results
in an impractical blow-out in domain size.

In this paper, we describe an algorithm that can handle multiple variables
per agent and efficiently find partial solution(s) to the given over-constrained
problem. This study extends our earlier work on dynamic agent ordering for
under-constrained distributed problems [10] that was an improvement over the
state-of-the-art method, asynchronous weak commitment search [9]. We refer to
the new algorithm as the over-constrained dynamic agent ordering algorithm
(ODAO). Here, we use the degree of constraint unsatisfaction (degreeUnsat) as
a measure of relaxation in the weakened problem. This value not only reflects
how unsatisfied the constraints are in the current instantiation, but also guides
the search by dynamically determining the order in which agents are allowed
to change their particular variable instantiations. This measure can be used to
calculate the degree of relaxation of the global solution. An empirical analysis
demonstrates that the proposed algorithm performs better than the one based
on asynchronous weak commitment search.

In the rest of the paper, we define a DCSP and a DOCSP and examine
the shortcomings of existing approaches to DOCSPs. We then introduce a new
method for finding an optimal solution to a DOCSP using the degree of un-
satisfaction. We then report an experimental study of the proposed algorithm,
and analyse its performance in comparison with asynchronous weak commit-
ment search [9] suitably adapted to handle over-constrained problems. Finally,
we conclude the paper.

2 Distributed Constraint Satisfaction Problems

2.1 Definition
In a distributed constraint satisfaction problem:

1. There exists an agent set A:
A= {Al, AQ, . An}, nec Z+;
2. Each agent has a variable set X; and domain set D;,

X; = {XileiZa ~~~aXip7~,};
Di - {Di17Di2a "'aDipi}a Vi € [].,TL], pi € Z+;

3. There are two kinds of constraints over the variables among agents: Intra-
agent constraints, which are between variables of the same agent. Inter-agent
constraints, which are between variables of different agents.

Handling Over-Constrained Problems in Distributed Multi-agent Systems 15

4. A solution S, is an instantiation for all variables that satisfies all intra-agent
and inter-agent constraints.

A DCSP with no solution is referred to as a DOCSP. Many real world situa-
tions make DCSPs unsolvable, i.e., there is no instantiation that can satisfy all
constraints. We can only hope for an optimal solution (partial solution) for the
problem at hand. Clearly, the quality of these partial solutions depends on the
heuristic (rationalization) we use for selecting constraints for relaxation.

2.2 Difficulties with Current Approaches

In this section we examine the existing methods to highlight any difficulties
they may have, particularly in relation to handling multiple variables per agent
problems.

Asynchronous Backtracking [7] was proposed to deal with DOCSPs. When
an empty nogood is found, a new related threshold is generated, and the search is
restarted. By iteratively applying this procedure, an optimal solution will even-
tually be found. However, this is not a very efficient approach, as an agent with
a lower priority has to perform an exhaustive search to determine if there are no
solutions for the current threshold. When the number of local variables increases
to more than one per agent, this approach becomes increasingly impractical.

A DOCSP can be formalised as a distributed partial CSP (DPCSP), a dis-
tributed maximal CSP (DMCSP) or a distributed hierarchical CSP (DHCSP).
The DMCSP is actually a subclass of the DPCSP. The difference is that, for
a DPCSP, agents search for variable values that minimize the total number of
constraints relaxed; and, for a DMCSP, agents search for variable values that
minimize the maximum number of violated constraints in each agent. Both meth-
ods use global distance to measure the degree of the relaxation. In a DPCSP,
this value is the total number of constraints relaxed, G = Y7 | d;'; and, in
a DMCSP, it is the maximal number of constraints relaxed over the agents,
G = max(d;).

If we were to adapt these methods to handle multiple variables per agent,
then relaxing an intra-agent constraint would present little difficulty, i.e., it would
cause the agent in charge of that constraint to increase the distance measure by
one. However, if an inter-agent constraint is relaxed, the two related agents would
both add one to their respective distances. Hence, although only one constraint
was relaxed it would be counted twice. This double-counting does not matter
in the single variable problem as all constraints are, by definition, inter-agent
constraints. The addition of intra-agent constraints complicates this situation
and requires a more sophisticated distance measure to be defined.

In a DHCSP, each constraint is labelled with a positive integer called the im-
portance value. The larger the value, the more important the constraint. Agents
search for variable values that minimize the maximum importance value of vi-
olated constraints over all agents. Processing can either start at the top of the

! Where G is the global distance; n is the number of agents in the problem; d; is the
local distance for each agent, and the value of d; is the number of constraints relaxed.

16 L. Zhou, A. Sattar, and S. Goodwin

hierarchy (top-down), in which case agents try and satisfy the constraints with
the greatest importance value first. Then the next level down is attempted, and
so on. Alternatively, agents may start by trying to satisfy all levels of constraints
(bottom-up). If this is not possible then the lowest level constraints are relaxed.
If this relaxed problem cannot be satisfied then the next least important layer is
relaxed, and so on. In bottom-up processing, if one agent cannot find a solution
at certain level, all agents have to relax their constraints on that level, even if
other agents’ constraints can be satisfied at that level. Hence, an optimal solu-
tion for a DHCSP would not necessarily be optimal according to the DPCSP or
DMCSP global distance measure. In addition, the efficiency of a DHCSP is poor.
The worst case is that the optimal solution level is far away from the starting
point. For some problems a bottom-up approach is preferable, whereas for others
a top-down would be more efficient. Unfortunately, we cannot tell which starting
point should have been used until the problem has been solved.

The distributed constraint optimization problem framework was developed in
[8]. The aim of solving this kind of problem is to find a minimal or maximal cost
over all constraints. It has been commonly used for distributed over-constrained
satisfaction problems. A cost function relates each pair of variables, whose dif-
ferent instantiation combinations result in different values of the cost function.
Agents cooperatively select values, in order to optimize the cost function.

Multiple variables per agent are common in real-life DCSPs and its variants.
When solving these problems, it is generally necessary to considering inter- and
intra-agent constraints. This is not the case for DCSPs where one variable per
agent is assumed. All variables in one agent can be considered as one virtual
variable. All local solutions can be considered as possible values for the virtual
variable. However, this is impractical in DCOPs, especially when cost functions
are taken into account. When cost functions are involved, it is impossible to view
each agent as having just has one virtual variable. A cost function is directly
applied to each pair of variables—mnot local solutions. So multiple variables can
not be represented by one virtual variable in distributed constraint optimization
problems. Earlier mentioned approaches (Adopt, OptAPO, etc.) can only deal
with DCOPs with a single variable per agent. When the number of variables is
more than one in per agent, these algorithms can not to be used any more. In
addition, the cost functions have to be pre-processed. The results of each pair
of variables’ instantiations have to be fully listed before problem solving. This
requires large memory storage and extra computations.

The above methods do not describe how problems with multiple variables
per agent could be handled. Some of them even do not have the ability to solve
this kind of problem because of the mechanisms of the methods. Such problems
would cause considerable difficulty, since relaxing an intra-agent constraint and
relaxing an inter-agent constraint can be mistakenly considered as being equal.
Relaxing different kinds of constraints will result in a weakened problem that
has different hardness and structure.

We propose a new approach for measuring and solving distributed over-
constrained satisfaction problems with multiple variables per agent. First of all,

Handling Over-Constrained Problems in Distributed Multi-agent Systems 17

the concept of distributed constraint density (related to both intra-agent and
inter-agent constraints) will be introduced as part of a new distance measure for
constraint relaxation.

3 Constraint Density in Distributed Over-Constrained
Satisfaction Problems

Constraint density in DCSPs has been introduced and defined in [10]. By looking
at two problem features, intra- and inter-agent constraint densities were fairly
measured. In addition, the dynamic constraint density much more reveals the
current state of each agent during a search. degreeUnsat as the ratio of the
static constraint density to the dynamic constraint density is used to measure
the degree of unsatisfaction in each agent. The degreeUnsat ranges from a value
of zero, if all constraints are satisfied, to one, if all constraints are unsatisfied.
Solving a DCSP is actually a process of minimizing the value of degreeUnsat for
each agent. When all agents’ degreeUnsat = 0, all constraints are satisfied and
the problem is solved. We developed a dynamic agent ordering (DAO) algorithm
by using this technique [10], where Agents autonomously order themselves to
re-instantiate their variables. This improves the search efficiency and requires
less memory usage than other state-of-the-art approaches. We now extend this
technique to measure the degree of relaxation of a DOCSP. The benefit of this
approach is that it combines both intra- and inter-agent constraint relaxations
into a single measure.

Relaxing constraints in DOCSPs is different from relaxing constraints in an
ordinary (non-distributed) over-constrained problem. We should consider not
only the relaxation of constraints, but also the communication cost and the ef-
fects on agents’ relations. For example, we generally treat inter-agent constraints
as more important than intra-agent constraints, because they have a greater im-
pact on the overall problem (i.e. they affect more than one agent). Hence, we
would normally prefer to relax an intra- rather than an inter-agent constraint.

However, inter-agent constraint relaxation should be considered as well. Re-
laxing an inter-agent constraint will loosen the associated intra-agent constraint
problems, providing more opportunities for agents to solve subproblems locally,
and so reduce future communication costs. Relaxing an intra-agent constraint
is easier than relaxing an inter-agent constraint, since only one agent involved.
Relaxing an inter-agent constraint is more efficient than relaxing an intra-agent
constraint, as both agents will directly benefit from it. Hence there is a trade-off
between these two types of relaxation.

From the perspective of the processing cost and the outcome, we may con-
sider that relaxing one inter-agent constraint is equal to relaxing a number of
intra-agent constraints. This kind of equality does not mean that the process of
relaxation is equivalent, but it does mean that the consequences may be the same.

In this context, we use degreeUnsat to guide the search and measure (as a
threshold) the satisfiability of the relaxed DOCSP. Next, we propose a method
for finding an optimal solution to a DOCSP using thresholds:

18 L. Zhou, A. Sattar, and S. Goodwin

Threshold Repair Method: We can use the degreeUnsat as a threshold to
define the degree of constraint relaxation required for each agent in the problem.
If degreeUnsat = 1, then no constraint need be satisfied, and if degreeUnsat = 0
then all constraints must be satisfied. For values between 0 and 1, the number
of unsatisfied constraints depends on the structure of the problem, remembering
that the degreeUnsat takes into account the difficulty of satisfying individual
constraints. If an empty nogood is discovered, (i.e., the threshold is not achiev-
able) the threshold value is increased by an amount that depends on the related
constraints. By iteratively applying this method the optimal degreeUnsat solu-
tion will eventually be found.

If we are uncertain as to whether a problem is over-constrained, setting the
initial threshold to zero will guarantee finding the optimal solution. Otherwise,
setting the threshold at a reasonable lower bound on the optimal solution thresh-
old will reduce the amount of processing required. It should be noted that exist-
ing approaches require that the over-constrained status of a problem is known
in advance, whereas our method can solve both under- and over-constrained
problems without modification. It should also be noted that the threshold has
a different meaning in the different formalisations we have discussed. In DPC-
SPs, the threshold is the number of constraints that can be relaxed in the entire
problem, in DMCSPs, it is the maximal number of constraints that can be re-
laxed for each agent in the optimal solution, and, in DHCSPs, it is the minimal
importance value on the constraints that can be reached. In our algorithm, it
reflects the degree of the relaxation or degreeUnsat of the optimal solution.

For a DOCSP, an optimal solution is found when minimal values are reached
for all degreeUnsat of each agent. The global measure of unsatisfiability can be
represented as

i degreeUnsat;
n

GdegreeUnsat =

where n is the number of agents in the problem. The global degreeUnsat
(GdegreeUnsat) shows the degree of relaxation for the entire problem. Using our
approach, each agent may have a different threshold, whereas the other ap-
proaches we have discussed require a global threshold that is imposed uniformly
on each agent.

4 Algorithm

In this section, we introduce the Over-constrained Dynamic Agent Ordering
(ODAO) algorithm, which uses the threshold repair method to solve DOCSPs,
as follows:

1. A threshold (a value of degreeUnsat) is decided before the search started.
All variables in each agent are alphabetically ordered and assigned a priority
of 0;

2. In the initial state, each agent concurrently instantiates their variables to
construct a local solution, while checking consistency to guarantee the local

Handling Over-Constrained Problems in Distributed Multi-agent Systems 19

degreeUnsat < threshold. Each agent then sends its local solution to its
neighbouring agents (i.e., those with which it shares at least one inter-agent
constraint);

3. Each agent then starts to construct a local solution which attempts to satisfy
both intra-agent constraints with higher priority variables and inter-agent
constraints with higher priority agents (i.e., agents with lower degreeUnsat).
Each agent attempts to satisfy as many constraints as possible for each
variable such that its degreeUnsat is minimised. If an agent is unable to
instantiate a variable with any value in its domain, a nogood is discovered.
If this nogood is not a repeat and is not empty, it will be recorded and the
priority of the variable will be increased by one. For each constraint involved
in the nogood, the degreeUnsat resulting from relaxing that constraint is
calculated. The minimum value of these degreeUnsat calculations is then
stored as well. If the nogood is empty, this implies the threshold is still too
tight, and threshold repair will be carried out, i.e., the new threshold is the
minimal degreeUnsat, Tppin recorded for the agent, such that 15, is greater
than the current threshold.

4. The agent calculates the value of degreeUnsat. If degreeUnsat < threshold,
the agent sends messages to neighbouring agents. Each message contains the
degreeUnsat value and the local instantiation of the agent. Otherwise, we
go back to 3;

5. The search will stop when each agent i detects that its degreeUnsat; <
threshold;.

In effect, ODAOQ is using the change in degreeUnsat as a distance measure,
and so is implicitly placing an importance value on each constraint. This impor-
tance value is the amount by which the degreeUnsat will change for an agent,
when a particular constraint is relaxed, i.e., when a relaxation needs to occur,
the constraint that causes the smallest change in degreeUnsat is selected. Put
simply, an agent will relax the constraint it calculates as easiest to satisfy. This
distance measure has two features that distinguish it from the approaches dis-
cussed earlier: firstly, it is local to the agent, and secondly it is dynamic, i.e., it will
change according to which constraints are currently unsatisfied. Also note that
no constraint is permanently flagged as relaxed. Each agent has a degreeUnsat
threshold it is trying to attain, and is free to relax any constraint to attain that
threshold, each time it gets a turn.

Example: To further clarify the details of the algorithm, we use a distributed 3-

colouring problem shown in Figure 1. The goal of the problem is to assign colours

to each node so that nodes connected by the same arc have different colours?. In

Figure 1 (a), Agent 1 has two intra-agent constraints and Agent 2 has three intra-

agent constraints, and they both have four inter-agent constraints. The static con-
17

straint densities for Agent 1 and 2 are - and 7 respectively. Before a search is

started, we assume that the threshold is 0, which means the problem is solvable.

2 B = blue, R= red, W = white.

20 L. Zhou, A. Sattar, and S. Goodwin

(a)

Fig. 1. A Distributed 3-colouring Problem

In Figure 1 (b), two agents assign colours to their variables, such that their
intra-agent constraints are satisfied, and then send messages to each other. As
Agent 1 has higher priority than Agent 2 (degreeUnsata, < degreeUnsata,),
it will do nothing and just await. In Agent 2, variable 1 has the highest prior-
ity and its value satisfies all constraints. Variable 2 has higher priority, but its
value violates the constraint between Agent 1’s variable 3 and itself. Although
Agent 2 tries to assign a new value to variable 2, it cannot find any colours
that satisfy all constraints. Hence, a nogood is produced, and is recorded as
{Ag, Va2, {A17 UQ,‘B’}, {Al, U37‘R’}, {Ag, Ul,‘W’}}, where Agent 2’s (AQ) variable
v9 cannot be instantiated with any colour because A;’s variable v is instantiated
with ‘B’, Ay’s variable v3 is instantiated with ‘R’ and As’s variable vy is instanti-
ated with ‘W’. The nogood is also sent to A; to avoid the same assignment in the
future. Ao assigns a colour ‘W’ to variable v, to minimize the number of unsat-
isfied constraints, and the priority of variable vy is increased by 1 as well. Next,
variable v detects another nogood {Ag, v1, {41, v2,'B’}, {A1,v3,'R’}, {Ag, v9, W’
+}. Later, Agent A; will discover another two nogoods for variable vy and vs,
containing As’s variable v; and variable vy. Finally, an empty nogood will be
produced. It reveals the problem is over-constrained and has no solution. The
agent generating the empty nogood then checks its nogood history, and relaxes
the constraint that causes the minimal degreeUnsat. In this case, Agent As se-
lects the constraint between variable v; and vy to relax. The threshold for the
Agent A is % ~ 0.04762. Then an optimal solution found in Figure 1 (c).

The pseudo code of the algorithm is detailed Over-constrained Dynamic
Agent Ordering. Note that all variables from a neighbouring agent have higher
priority than any local variable iff degreeUnsat < local_degreeUnsat.

Handling Over-Constrained Problems in Distributed Multi-agent Systems 21

Algorithm Ower-constrained Dynamic Agent Ordering
while received(Sender_id, variable_values, degreeUnsat) do
calculate local_degree Unsat;
if local_-degreeUnsat < threshold and all other agents’ degreeUnsat < threshold
then the search is terminated;
else add (Sender-id, variable_value, degreeUnsat) to agent_view;
if local_degreeUnsat > degreeUnsat
then Assign_Local_Variables;

NSO N

Algorithm Assign_Local_Variables
calculate local_degree Unsat;
if local_degreeUnsat < threshold and degreeUnsat < local_-degreeUnsat
then send(Sender_id, variable_values, local-degree Unsat) to neighbouring agents;
else select an inconsistent variable v with the highest priority and assign a value from its
domain;
5 if no value for this variable
6. then if nogood is empty
7. then Threshold Repair;
8
9

=W

else if nogood is new
then nogood is recorded;

10. the priority of the variable is increased by one;
11. else assign a value with minimal violations to the variables with lower priorities;
12. Assign_Local Variables;

Algorithm Threshold Repair

L. Thmin=1;

2 temp_-degreeUnsat = degreeUnsat from first nogood in the nogood set;
3. while not the end of nogood set do

4. if temp_degreeUnsat > threshold and

5 temp-degreeUnsat < Thpyin

6 then T,,;, = temp_degreeUnsat;

7 temp_degreeUnsat = degreeUnsat from next nogood;

8 threshold = Thin;

In a realistic problem, different agents may arrive at different values for their
local_degreeUnsat, meaning that different levels of optimization can be reached
by different agents. Finally, the global degreeUnsat can be used to measure the
degree of relaxation for the entire problem.

5 Experimental Results

We evaluated our algorithm on a benchmark set of 3-colouring problems, using
the problem generator described in [5]. We then added a number of constraints
to make the problem over-constrained. Each agent was also constrained to have
at least one inter-agent constraint. Then, we randomly distributed n constraints
to groups of four nodes from the same or different agents, where each group is
required to be fully connected (each node has three constraints connecting to
the other three nodes). As a result, the problem is over-constrained.

We also implemented our own variant of the AWC algorithm [9], Asyn-
chronous Over-constrained Weak-commitment search (AOWC) to deal with dis-
tributed over-constrained satisfaction problems. This was necessary as there was
no available complete search algorithm that could handle DOCSPs with multiple
variables per agent. We chose AWC as a starting point because it was the only
available algorithm that can handle multiple variables per agent in a distributed
under-constrained environment.

22 L. Zhou, A. Sattar, and S. Goodwin

Table 1. Results for Distributed 3-colouring Over-constrained Problems

A|V| C |Method||Constraints Final| Checks|Nogoods Local| Time (s)
Relaxed|Threshold Solutions
3|15/ 43 |AOWC 1.65 1198 179 162| 0.143091
ODAO 0.0043 611 81 66| 0.096632
4 |20| 58 | AOWC 3.71 3145 1021 579 0.471683
ODAO 0.0055 1218 337 192] 0.291953
5125/ 72 |AOWC 4.14 10726 1779 741 2.392564
ODAO 0.0038| 6642 853 369 1.210876
6 |30| 87 |AOWC 5.37 42170 5472 2011| 10.686257
ODAO 0.0023| 17134 1862 758 4.568762
7135|101 AOWC 5.82 99374 8653 2437| 23.561248
ODAO 0.0030| 52836 3893 1095| 9.498762
8 |40{116| AOWC 7.21 473291 31059 3624| 94.398217
ODAO 0.0034| 116174 9187 1952 21.079638
9 |45/130|AOWC 7.96 1087532| 417206 8167|171.896542
ODAO 0.0020| 459961 13624 2751| 76.504976
10|50(145| AOWC 7.49 3963721| 119394 18364(564.749568
ODAO 0.0016/1217286| 35397 4858(144.126825

AOWC operates in the following way: when an empty nogood is discovered, it
randomly relaxes one of the constraints from the nogood at the bottom of the no-
good stack (i.e., the last non-empty nogood that was discovered). It then restarts
the search on this relaxed problem. If the problem cannot be solved, i.e., it results
in a further empty nogood, then another constraint from the original nogood is
relaxed. If all constraints in the first nogood are relaxed, then this nogood is
removed from the bottom of nogood stack, and the next nogood is selected for
relaxation. Since AOWC cannot recognize an optimal solution, we allow it to re-
peat this process until a solution is found that equals the optimal solution from
our own approach (in terms of a count of the number of constraints relaxed).

Table 1 shows the experimental results comparing AOWC with our new ap-
proach, where A is the number of agents, V' is the total number of variables and
C is the total number of constraints in a problem. All data points are averaged
over 100 trials. We set up the initial ODAO threshold to be 0.1% (0.001), with
the final threshold (global degreeUnsat) shown in the table. It should be noted
that the values of Threshold are not the ratios of the number of unsatisfied
constraints to the number of the total constraints, rather they are the averaged
values of the degreeUnsat, when the optimal solutions are found.

From these results it is clear that our algorithm (ODAQO) is considerably
more efficient than AOWC in terms of communication cost and execution time.
The number of nogoods and local solutions for AOWC are approximately 2 to
5 times more than for ODAO. As a result, the communication load is much
heavier. In addition, more checks are needed during search. AOWC also spends
a significant amount of time on producing intermediate non-optimal solutions
during a search. This means that AOWC takes much longer than ODAO to

Handling Over-Constrained Problems in Distributed Multi-agent Systems 23

find an optimal solution. Conversely, ODAQO can find an optimal solution in a
reasonable time, and it also allows each agent to find a precise threshold when
an optimal solution is found.

6 Conclusion

This study has addressed the important issue of over-constrainedness in DC-
SPs. We proposed an algorithm that can directly address DOCSPs. In contrast,
existing approaches rely on formalising a DOCSP into a DPCSP, a DMCSP, a
DHCSP, or DCOPs then using the relevant algorithms to solve it. Our approach
also can handle DOCSPs in which an agent may have multiple variables, while
existing approaches allow only one variable per agent. We further conclude that
intra- and inter-agent constraint relaxation cannot be treated identically. When
searching for an optimal solution for a DOCSP, it is easier to relax an intra-
rather than an inter-agent constraint. This is because intra-agent constraints
only have local effects. However, an inter-agent constraint relaxation can make
it easier to satisfy the intra-agent constraints of the agents to which it is con-
nected, i.e., it can make the overall problem easier. Another effect of relaxing
an inter-agent constraint is that it will reduce the communication and external
computation costs for the two agents it connects. Conversely, when relaxing an
intra-agent constraint, only one agent gets the benefit. Hence the question of
the relative importance of inter- and intra-agent constraints is not clear-cut. In
our approach, we allow the autonomous agents to make decisions about relaxing
intra- versus inter-agent constraints, based on the current degreeUnsat measure,
rather than mandating a fixed trade-off. At the same time, this approach acts
as an efficient mechanism to guide the search. Finally, an ODAO agent has the
ability to dynamically adjust the threshold at which it will accept a solution.
This means our algorithm can deal with DCSPs without knowing whether a
problem is under- and over-constrained.

References

1. Eugene C. Freuder and Richard J. Wallace. Partial constraint satisfaction. Artifi-
ctal Intelligence, 58(1-3):21-70, 1992.

2. Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint satisfac-
tion problem. In Proceedings of the Third International Conference on Principles
and Practice of Constraint Programming (CP-97), pages 222-236, 1997.

3. Katsutoshi Hirayama and Makoto Yokoo. An approach to over-constrained dis-
tributed constraint satisfaction problems: Distributed hierarchical constraint satis-
fact. In Proceedings of the Fourth International Conference on MultiAgent Systems
(ICMAS-2000), 2000.

4. Roger Mailler and Victor Lesser. Solving Distributed Constraint Optimization
Problems Using Cooperative Mediation. In Proceedings of Third International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004),
pages 438-445. IEEE Computer Society, 2004.

24

10.

L. Zhou, A. Sattar, and S. Goodwin

. S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: a

heuristic repair method for constraint satisfaction and scheduling problems. Arti-
ficial Intelligence, pages 161-205, 1992.

. Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. An asyn-

chronous complete method for distributed constraint optimization. In Proceedings
of the second international joint conference on Autonomous agents and multiagent
systems, pages 161-168. ACM Press, 2003.

. Makoto Yokoo. Constraint relaxation in distributed constraint satisfaction prob-

lem. In Proceedings of 5th International Conference on Tools with Artificial Intel-
ligence, pages 56-63, 1993.

. Makoto Yokoo and Edmund H. Durfee. Distributed constraint optimization as a

formal model of partially adversarial cooperation. Technical Report CSE-TR-101-
91, Ann Arbor, MI 48109, 1991.

. Makoto Yokoo and Katsutoshi Hirayama. Distributed constraint satisfaction al-

gorithm for complex local problems. In Proceedings of the Third International
Conference on Multiagent Systems (ICMAS-98), pages 372-379, 1998.

Lingzhong Zhou, John Thornton, and Abdul Sattar. Dynamic agent ordering in
distributed constraint satisfaction problems. In Proceedings of the 16th Australian
Joint Conference on Artificial Intelligence, AI-2003, Perth, 2003.

Performance Evaluation of an Agent Based
Distributed Data Mining System

Sung Baik!, Ju Cho!, and Jerzy Bala?

I Sejong University, Seoul 143-747, Korea
sbaik@sejong.ac.kr
2 Datamat Systems Research, Inc.,
1600 International Drive, McLean, VA 22102, USA
jbala@dsri.com

Abstract. This paper presents a distributed approach to build decision trees in a
lock step manner with each node proposing an attribute on which to split. A
central mediator chooses the attribute, among the candidates, with the highest
information gain. The chosen split is then effectively communicated to the other
agents to partition their data. The distributed decision tree approach is per-
formed on the agent based architecture dealing with distributed databases. This
paper mainly focuses on the evaluation of the system performance in distributed
data mining. Even though there are several trials suggesting algorithms of dis-
tributed data mining, few efforts have made on the definition of the system per-
formance. It is very important to define the performance for the further devel-
opment of distributed data mining.

1 Introduction

Computational efficiency and scalability is a very critical issue in data mining [1]
since the amount of data is rapidly increasing in the real world. Also, it is very impor-
tant in data mining to deal with huge amounts of data located at different sites since
these data are naturally located at geographically distributed sites, and some of them
are relevant to each other. In such a distributed environment, a basic approach for data
mining is to move all of the data to a central data repository and then to analyze them
with a single data mining system. However, even though it guarantees accurate results
of data analysis, the approach requires overly expensive computation and communica-
tion costs. It also has a critical security problem in that it reveals private information
data, although privacy preserving issues [2-7] are major concerns in inter-enterprise
data mining when dealing with private databases located at different sites. An alterna-
tive approach is high level learning with in-place strategies in which all the data can
be locally analyzed, and the local results at their local sites are combined at the central
site to obtain the final result (global data model). This approach is less expensive but
may produce ambiguous and incorrect global results. To make up for such a weak-
ness, many researchers have spent great efforts looking for more advanced ap-
proaches of combining local models built at different sites. Most of these approaches
are agent-based high level learning such as meta-learning [8], knowledge probing [9],

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 25-32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

26 S. Baik, J. Cho, and J. Bala

and mixture of experts [10], Bayesian model averaging [11], and stacked generaliza-
tion [12]. However, these approaches still only have the ability to estimate a global
data model through the aggregation of the local results, rather than generating an ex-
act correct global model. In particular, they have the critical weakness of not dealing
with heterogeneous databases located at different sites.

2 System Architecture and Distributed Learning Algorithm

This paper presents an agent based distributed data mining approach, in which the
modified decision tree algorithm on an agent based framework can deal with hetero-
geneous data sets in the distributed environment [13,14] and produce accurate global
results. The data mining based the algorithm takes full advantage of all the available
data through a mechanism for integrating data from a wide variety of data sources and
is able to handle data characterized by geographic (or logical) distribution, complexity
and multi feature representations, and vertical partitioning/distribution of feature sets.

a e a

Agent 2

Mining Engine

Fig. 1. System architecture of an agent based distributed data mining

Fig. 1 shows the architecture of an agent based system, which consists of a web
server, a mediator, and agents. The web server supports users with a web based inter-
face through which they can access databases located at different sites and manipulate
data mining facilities. The mediator coordinates the communication between several
agents with security concerns such as authentication. Each agent is located at each
heterogeneous data site to achieve coordinated learning through the cooperation of lo-
cal learning and communication with the other agents. The mining engine and the
communication interface within the agent are implemented in C and Java, respec-
tively (See Fig. 2).

Performance Evaluation of an Agent Based Distributed Data Mining System 27

,,,,,, [Agent L. _.[Mediator ...
S e \
/ \
C Code Java Code '
:
P |
%i = i o
m i
E} s 3 O O =%
n [@ o o S o
o ' o o
3 1o s 3 3 x~2 C
2lle 10 o |3 gt—————— +H °G g
o gy 2 3] @
(@] @ =1 2 | a
o Iy R b c =
2= iF 5 > V2
B =
o ' (¢} ! Q
= v o e 29
oz L=-o 2 5 e Sa
Q — ogm o] ' o) ® 9
@ i I g = pmi]
8 Moit—r>28% > H4--—-—- - g
o o 0= > =
] E 19 = — ! =
— g @ @ =
o 5 = = o w
I o 2 g g 5%
8 R 0o & e N
2 R W EE g kN P 29
S E R e H+t—————— H [}
B S
'@
Ve
I

Fig. 2. The communication structure between mediator and agents

The Distributed Data Mining (DDM) component includes a number of Data Min-

ing Agents whose efforts are coordinated through a facilitator. One of the major func-
tions of the facilitator is to collect information from various DM Agents and to broad-
cast the collected information to other Agents involved in the mining process. To this
end, there is a certain amount of cost associated with the distributed mining process,
namely that of the communication bandwidth. For very large datasets, the high cost of
transferring information from one agent to another can become a major hindrance in
the data mining process.

The distributed learning algorithm of a decision tree in an agent-mediator commu-

nication mechanism is as follows:

o =

S AW

[Mediator] Start the local data mining processes associated with local agents.
[Agent] Find the attribute and its associated value that can best split the data into
the various training classes during local mining.

[Agent] Send the best local attribute and its associated value to the mediator.
[Mediator] Select the best attribute from the best local attributes of all the agents.
[Mediator] Notify each agent of its role for the next action (splitting or waiting).
[Agent] Split the data, according to the best global attribute and its associated split
value, in the formation of two separate clusters of data in the selected agent.
[Agent] Distribute the structural information in each cluster and the best attribute
to the other agents through the mediator.

[Agent] Construct the partial decision trees according to the structural information
in other agents.

[Agent] Generate decision rules at each agent and notify the mediator for termina-
tion if there is no more splitting. Otherwise, go to step 2.

10. [Mediator&Agent] Terminate.

28 S. Baik, J. Cho, and J. Bala

3 Performance Evaluation of Distributed Mining Process

This section evaluates the performance of the presented agent-based decision tree al-
gorithm (DDM) with a comparison of a centralized decision tree algorithm (SDM)
such as C5.0 of Quinlan [15]. In the centralized decision tree algorithm, the entropy
calculation is very critical in processing huge data. So, the time to find the best en-
tropy from a given table of the database can be defined as a computation cost. In the
distributed data mining, there are generally two extra main costs such as communica-
tion costs and knowledge integration costs. However, we do not need to compute the
knowledge integration costs, which is too complicated to define since our approach is
distributed data mining through the exchange of information during the decision mak-
ing process.

The presented distributed mining process is evaluated by comparing the response
times of DDM (RT,,,) and SDM (RT,,,,) for the construction of the simple decision
tree with two branches under the following assumptions:

T4, - Time of decision tree construction by each agent from its own local database.
T,,,: Time of the communication between each agent and the mediator.

p : The number of records selected for analysis from database.

k : The number of fields selected for analysis from database.

n : The number of agents participated in mining process.

t,. : Transmission Time (sec/bit)

r, : Compressed rate for transmitted data.

tepu - CPU processing time for a component.

The entropy computation time of SDM is as follows:
2
RTsdm = Tsdm =k- p - tcpu (n

On the other hand, since the given table is vertically partitioned into the same number
of agents, the entropy computation time of DDM is as follows:
k-p”-t
Ty = 2" @)
n
When considering the communication time (7,,,,), the transmission data amount be-
comes p-r. bits for the communication between each agent and the mediator. There-
fore, the communication time is as follows:
Tcom =prct, 3
Through Equations of (2) and (3), the distributed processing time of DDM is as fol-
lows:
2
k- p 'tcpu

RTddm:T-{_p'rc.ttr 4)

Here, we get to a point (RT,,, — RT,,, =0) where the performance of DDM be-
comes better than that of SDM.

Performance Evaluation of an Agent Based Distributed Data Mining System 29
Suppose that RT,, —RT,,, is AT , we can get Eq. 5 according to Eq. 1 and 4.
n

2
2 k-p Tepu
AT(kp) =k p™ 1oy —| —————+ P 1 1y &)

To obtain the table size (k* p) when AT (kp) >0, we try to find the solution in Eq. 6.

2 k- p2 'tcpu
k-p” ty,—| ————+pr1.-1, |20 6)
n
Eq. 6 is equivalent to 7,
(n—1)
p(p Tepu kp =T, 1, |20 (7
Since p >0, Eq. 7 is equivalent to 8,
("n;l)t kp —r 1, 20 (8)
ry
AT
(n—1)
AT =- o kp =1t
" o p ": 1
"”"r ‘f'\lu L
;("fn',--"".

Fig. 3. The graph of response time (AT) in terms of kp

Fig. 3 represents a graph of Eq. 8 and shows that the performance of DDM be-
comes better at a certain size of data (kp) than that of SDM. We can say there are full
benefits on the distributed processing if there are huge amounts of data.

4 Experimentation

Experimental data sets are synthetic data created by a random value generator spe-
cially developed for the purpose of the construction of decision trees. The software
can generate any data set with different depths of decision trees and different num-
bers of records and fields in the databases. We vertically partitioned the generated

30 S. Baik, J. Cho, and J. Bala

data set into several subsets which correspond on agents located at different sites.
With such data sets, we evaluate the performance of the proposed distributed data
mining method under 10 experiments conducted by increasing the number of records
in its local database, step by step, whereas the number of fields is fixed. Each experi-
ment compares the performance, of the proposed system, altered with a different
number of agents. Table 1 summarizes the performance of the system with a flexible
number of agents throughout all experimentation.

The decision rule set generated in each experiment is exactly the same to that of a
centralized data mining system, since the proposed algorithm for distributed data min-
ing uses all the available data located at different sites, without moving them to each
other. These decision rules are revealed simply because geographical data, easily dis-
criminated on aerial images, are used in the experiments. In conclusion, the experi-
mental results show that the distributed version with more agents outperforms the ver-
sion with fewer agents when the rule generation from a large database is not
complicated with low communication overhead between agents and the mediator.

Table 1. Experimental results

Experiment S | # of Recor Processing Time (seconds)
tep ds None 2 agents | 3 agents | 4 agents
Exp 1. 0.3x10° 11.7 6.3 32 2.1
Exp 2. 0.6x10° 23.1 15.8 10.1 4.9
Exp 3. 0.1x10° 352 232 15.4 10.7
Exp 4. 0.2x10° 50.5 32.8 23.0 15.8
Exp 5. 0.3%10° 62.8 38.8 314 21.8
Exp 6. 0.4%10° 73.8 44.5 37.2 24.1
Exp 7. 0.5%10° 89.6 55.7 422 33.8
Exp 8. 0.6x10° 101.5 62.5 50.1 37.9
Exp 9. 0.7%10° 121.8 71.6 53.8 449
Exp 10. 0.8x10° 1482 82.7 61.0 49.8

5 Conclusion and Future Work

Even though the concept of distributed data mining is very helpful in data analysis,
there is a limitation for use in the real world due to its low performance. This paper
presented a new paradigm of distributed data mining and its performance evaluation
so that this technique can be applied to a specific situation. As hardware techniques
are improving, this approach will be more useful for data analysis considering infor-
mation security. As a future work, we plan to build a consortium of several agent
based systems with a mediator-agents communication mechanism for more efficient
data analysis in a distributed way. An example of the consortium system is presented
in Fig 4.

Performance Evaluation of an Agent Based Distributed Data Mining System 31

System A

D

D

Fig. 4. Consortium of several agent based (distributed data mining) systems with a mediator-
agents communication mechanism

References

1. Kamber, M., Winstone, L., Wan, G., Shan, S. and Jiawei, H.: Generalization and Decision
Tree Induction: Efficient Classification in Data Mining, Proceedings of the Seventh
International Workshop on Research Issues in Data Engineering, pp.111-120, 1997

2. Agrawal, S., Krishnan, V. and Haritsa, R. J.: On Addressing Efficiency Concerns in Pri-
vacy Preserving Mining, Lecture Notes in Computer Science, Vol. 2973, pp.113-124,
2004

3. Malvestuto, M. F. and Mezzini, M.: Privacy Preserving and Data Mining in an On-Line
Statistical Database of Additive Type, Lecture Notes in Computer Science, Vol. 3050, pp.
353-365, 2004

4. Lindell, Y. and Pinkas, B.: Privacy Preserving Data Mining, Lecture Notes in Computer
Science, Vol. 1880, 2000

5. Krishnaswamy, S., Zaslavsky, A. and Loke, S. W.: Techniques for Estimating the Compu-
tation and Communication Costs of Distributed Data Mining, Lecture Notes in Computer
Science, Vol. 2329, pp. 603-612, 2002

6. Aggarwal, C. C. and Yu, P. S.: A Condensation Approach to Privacy Preserving Data
Mining, Lecture Notes in Computer Science, Vol. 2992, pp. 183-199, 2004

7. Kargupta, H., Datta, S., Wang, Q. and Sivakumar, K.: On the privacy preserving proper-
ties of random data perturbation techniques, Proceedings of the Third IEEE International
Conference on Data Mining, pp. 99-106, 2003

8. Stolfo, S., Prodromidis, A. L., Tselepis, S. and Lee, W.: JAM: Java Agents for Meta-
Learning over Distributed Databases, Proceedings of the International Conference on
Knowledge Discovery and Data Mining, pp. 74-81, 1997

9. Guo, Y. and Sutiwaraphun, J.: Knowledge probing in distributed data mining, In Ad-
vances in Distributed and Parallel Knowledge Discovery, 1999

32

10.

11.

12.
13.

14.

15.

S. Baik, J. Cho, and J. Bala

Xu, L. and Jordan, M. I.: Em learning on a generalized finite mixture model for combining
multiple classifiers, In Proceedings of World Congress on Neural Networks, 1993

Raftery, A. E., Madigan, D. and Hoeting, J. A.: Bayesian model averaging for linear re-
gression models, Journal of the American Statistical Association, Vol. 92, pp. 179-
191, 1996

Wolpert, D.: Stacked generalization, Neural Networks, Vol. 5, pp. 241-259, 1992

Caragea, D., Silvescu, A., and Honavar, V.: Decision Tree Induction from Distributed,
Heterogeneous, Autonomous Data Sources, Proceedings of the Conference on Intelligent
Systems Design and Applications (ISDA 03), 2003

Giannella, C., Liu, K., Olsen, T. and Kargupta, H.: Communication Efficient Construction
of Decision Trees Over Heterogeneously Distributed Data, Proceedings of the Fourth
IEEE International Conference on Data Mining(ICDM 04), pp. 67-74, 2004

Quinlan, J. R.: Induction of Decision Trees, Machine Learning, Vol. 1, pp. 81-106, 1986

Adjusting the Autonomy of Collections of Agents in
Multiagent Systems

Michael Y.K. Cheng, Chris Micacchi, and Robin Cohen

School of Computer Science, University of Waterloo
(mycheng, cdmicacc, rcohen)@cs.uwaterloo.ca

1 Introduction

A topic of recent interest to researchers is designing multiagent systems that allow
agents to reason about adjusting their autonomy, determining when and to whom con-
trol of decision making should be transferred (e.g. [2, 6]). What is lacking, however, is a
method for integrating these individual adjustable autonomy algorithms into a cohesive
solution for the delegation of tasks for the society. In this paper, we first discuss one ap-
proach that employs a central coordinating agent in order to not only adjust the levels of
autonomy, but also ensure that there is coordination of this adjustment across all agents
in the system. Fully autonomous agents elect to have their autonomy adjusted when
faced with unexpected events that they are unable to resolve. The coordinating agent
revokes the autonomy of other agents in the system, temporarily, in order to address
these events. We discuss how this strategy for the adjustment of autonomy of agents is
well suited for multiagent systems operating in soft real-time environments. We then
present a model for agent-initiated adjustable autonomy that reasons not only about
decision-making delegation, but also about interaction in order to make more informed
decisions. Coordination of decision-making delegation amongst agents is addressed by
a locking mechanism, while the provision for interaction allows run-time monitoring of
the degree of bother of a potential resource/entity, resulting in possible refinements to
the selection of entities to which decision making is delegated.

2 Coordinator-Based Adjustable Autonomy

The goal of this research [4] is to allow certain agents in soft real-time multiagent
systems to continue to operate autonomously as much as possible, thereby reducing
the amount of negotiation and communication required to address new tasks in the
environment. We consider a scenario where an overall mission is first assigned to the
multiagent system by a human user and each agent develops a well defined plan in
order to address this mission, for the collective. The autonomy of the worker agents
in the society needs to be adjusted, however, in cases where the worker encounters
unexpected events that cannot simply be ignored, and that the agent cannot address by
itself. In these cases, assistance is solicited from a coordinator agent, who may then
revoke the autonomy of other agents, to address these new events.

In this research, we classify the possible kinds of unexpected events that may be en-
countered and include a definitive strategy for addressing each of these kinds of events

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 33-37, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

34 M.Y.K. Cheng, C. Micacchi, and R. Cohen

(some suggesting that agents simply continue to operate autonomously and others re-
quiring that the agents defer to a more authoritative coordinating agent). The events
include: opportunities (conditions that are not detrimental but may lead to new goals
and plans being adopted; the worker can inform the coordinator of its new goal or defer
decisions of what to do, to the coordinator); barriers (conditions that may prevent the
worker from progressing with its goals; the worker can inform the coordinator of its
new goal or defer to the coordinator to resolve the barrier); potential causes of failure
(conditions, which, if not corrected, will cause failure in the future; the worker can gen-
erate a plan to handle the problem and inform the coordinator, or send the problem to
the coordinator to handle).

The worker’s control thread iterates quickly to allow fast response to problems. It
must respond to revoke autonomy messages sent to it by the coordinator, must send
notification messages to the coordinator if it adopts a new goal to address unexpected
events, or send a panic message to the coordinator if it is unable to resolve a barrier or
PCF. Workers also send heartbeat messages to the coordinator, at regular intervals, to
register their current activities. The coordinator continuously merges state information
from workers into a global state representation. It revokes the autonomy of agents se-
lected to respond to panics sent by workers requiring assistance and provides new tasks
to these agents. When agents sent to assist with new problems have completed their
tasks, their autonomy is restored.

Overall then, the adjustable autonomy algorithm is one where an agent that cannot
find a solution to a problem will give up its autonomy by asking the coordinator for
assistance; it does not regain autonomy until the tasks assigned to it by the coordinator
are completed. Likewise, an agent selected by the coordinator to assist with a task will
have its autonomy revoked until that task is completed. This centralized method is par-
ticularly effective when agents have limited resources and it is best to offload decision
making to a coordinating agent.

3 Coordinating Reasoning About Decision Transfers

In this section, we discuss a decentralized approach to adjustable autonomy, based on
the Electric Elves (E-Elves) project [6], where agents compute a transfer-of-control
strategy, specifying a sequence of decision-making control transfers to other entities
(agents or humans), and how long the agent should wait for a response before giving
up, and transferring control to another entity.

In our approach [1], we allow an agent to possibly query a user for information,
but still retain decision-making authority. In addition, as in [2], we incorporate a bother
cost factor into the model, to account for the user’s annoyance at being interrupted by
agents. Our agents will follow an interaction strategy that specifies what query to ask
whom, for how long, and depending on the response, what to do next (e.g., ask another
query, or make a decision). Visually, one can imagine a strategy as a tree, with two types
of nodes, query/internal nodes, and decision/leaf nodes. A query node will have several
branches corresponding to the various possible responses, with each branch leading to
a strategy subtree. There are many possible paths of execution through a strategy tree.

The basic idea to determine an optimal strategy is for the agent to use a branch
and bound search to generate all possible strategies containing up to a fixed num-

Adjusting the Autonomy of Collections of Agents in Multiagent Systems 35

ber of queries K, evaluate the generated strategies, and then simply choose the
best one.

The optimal strategy s* is simply the generated strategy that is evaluated to have
the highest expected utility (EU). The expected utility of a strategy s is calculated as
follows:

EU(s) =) [P(LN) x (EQ(LN) = W(Tyy) — BCry)]
LN

where LN refers to a decision/leaf node, EQ(LN) and W (1) are adapted from E-
Elves[6] and refer to the expected quality of the agent’s decision at that particular leaf
node, and the costs of waiting until the time of the leaf node to finish the interaction,
respectively, and BCy is the cumulative bother cost incurred by all users queried
along the path to the leaf node LN.

The expected utility of the overall strategy is a sum of the utility of each of the
individual paths in it, factoring in the probability that the particular path will be taken.
We denote this term as P(LN), defined as follows: P(LN) = H PU (resp=rjx)
where we iterate r; over all the response branches that lead to the leaf node LN,
and PQj (resp = r; 1) refers to the probability of user U; responding with r; j to the
question Q.

One of the main criteria for querying one user over another is the user’s PUK g
value, denoting the probability that user U; knows the answer to question @ (as in [2])
Another criterion is the user’s PRQj (t) value, denoting the probability distribution over
time that U; responds to (); at time point ¢ (as in [6]). The three possible cases for how
to compute the value of PU? (resp = 1), are as follows:

[No response]: P (resp =T pesp) = 1 — fT PRQ (t)dt
[“I don’t know”]: ng (resp=rj2) = fTS Pjo(Ydt x (1 — PUng,)
[Answer response]: PQUJ (resp=rjaq) = f;ﬂ PRgJ (t)dt x PUng_ X PA(7,4)

where T is the time point at which the question was asked, and T is the time point
that the agent will wait until for a response, and PA(r;) denotes the probability that
the answer to question () is 7 ,. Note that fg ¢ PRgJ (t)dt gives the probability of U;
responding to (); during time frame [T, T¢].

In the more general case, an agent will be reasoning not only about interactions with
other entities (termed “partial” transfers of control or PTOCs, since decision-making
control will still rest with the agent who initiates the interaction), but also about transfer-
ring decision making control entirely to another entity (termed “full” transfer of control
or FTOC). This results in what we refer to as a “hybrid” transfer-of-control strategy for
the agent, with each agent selecting the strategy that will maximize the expected utility.

In a multiagent system, we encounter the problem that locally planned optimal
strategies may not be globally optimal. In particular, a major problem is that many
agents may transfer control to the same user for the same time period, leading to exces-
sive user bother and lower user response rate. We now consider a possible mechanism
for coordinating agent strategies as follows. We first of all assume that each user in the
system will have a corresponding proxy agent, and that requests to query a user will go

36 M.Y.K. Cheng, C. Micacchi, and R. Cohen

through the proxy. Now assume that in response to a request from an agent, the proxy
can impose a lock for a given time period [t,, tp], for its user and can ensure that no new
locks will be provided to other requesting agents within the specified timeframe, until
the lock is released. In addition, for any agent that requires a lock before ¢,, the proxy
will refuse to grant a lock!. Any agent requiring a lock after ¢;, will be allowed to, but
with a warning that there may be additional bother generated from earlier interactions
with that user by the first agent.

One challenge is that the agent that locks up the user for a given timeframe may in
fact not make use of that resource at all, if it is successful in a full control transfer to
another entity earlier in its transfer of control strategy. So, other agents that are request-
ing locks on the user for later timeframes will not know for sure whether the user will
have incurred some bother from previous interactions or not.

The locking mechanism for agent strategy coordination then works as follows: (i)
Agent computes an optimal strategy s* (ii) Agent tries to acquire from the various prox-
ies all the locks that may be used in strategy s*. So, for each transfer node in s*, Agent
will request a lock on the user and timeframe indicated by that transfer node. As part of
the lock request, Agent will inform the Proxy of the probability that Agent will reach/use
that lock. (iii.a) Agent receives all requested locks with no warnings. Then, Agent can
just start executing strategy s*. (iii.b) Agent receives all requested locks but is given
warnings by one or more of the proxies. Each warning informs the Agent that there is
an earlier lock that may be used with a certain probability. Then, Agent may need to
adjust the strategy s* so that Agent will first check with the proxy on whether or not the
user really has been bothered earlier, before transferring control to the user, or to some
other entity. (iii.c) Agent does not receive all the requested locks, due to conflicts with
existing locks. Then, Agent goes back to step [i] and recomputes the next best strategy
that does not involve the conflicts.

With the use of locks and the facility for interaction, it is now possible for an agent
to avoid simply transferring control to another entity that is ill-disposed to reply to its
request. Instead, when an agent plans to transfer control to a user, it will first obtain
a lock on that user, to ensure that the user will be free to respond during the required
timeframe. In addition, an agent can decide to forgo trying to transfer control to a user,
by being sensitive to accumulating bother costs: if the agent is warned by the proxy that
there is an earlier lock that might have been exercised (hence increasing bother cost)
and the agent reasons that the extra bother cost makes it worthwhile for it to change
its strategy (e.g., transferring control to someone else). What this enables, therefore, is
a much more accurate estimate of the expected utility of a transfer-of-control strategy
than is possible in a framework such as E-Elves ([6]). Each agent’s adjustable autonomy
algorithm now considers how other agents may be affecting the resources (i.e., users)
it is competing for; factors such as the bother cost to the user may be monitored to
determine if it is better to transfer to others.

Consider the following scenario: Agent 4 reasons a strategy s 4 involving transfer-
ring to John at time [3,10]. Agent 4 requests a lock on John during time [3,10] from

! This is to ensure that this second agent does not generate bother for the user that the first agent
cannot anticipate. Less stringent locks are possible; details are omitted here.

Adjusting the Autonomy of Collections of Agents in Multiagent Systems 37

John’s proxy agent (denoted as Prozy). There are currently no conflicting locks on
John, so Proxy grants the lock to Agent 4. This guarantees to Agent 4 that John will
be free at time [3,10] and moreover, that John will have the expected bother cost (ie:
John will not have been bothered earlier than time point 3). Now suppose Agentp
reasons a strategy sp involving transferring to John at time point [15,20]. Agent g re-
quests a lock on John from Proxy. Proxy grants the lock, but warns Agent g that John
may or may not have been bothered earlier with a certain probability (the probability
that Agent 4 uses the lock). Agentp may then reason that it is good to do a PTOC
at time point around 15 (assuming that proxy agents respond very quickly) and check
with Proxy first before transferring control to John, in case John was already both-
ered. If John was bothered already, then it decides to transfer to others. Note: we say
Agentp may reason to alter its strategy, because depending on the example scenario,
the best strategy for Agentp may still be to transfer control to John anyway, even with
the higher bother cost (in which case, there’s no need for a PTOC).

4 Discussion

Our coordinator-based approach relates well to that of Scerri et al. [5], that employs
proxies to help to allocate new tasks. Our approach of relying on communication to
detect when tasks are completed and to prevent conflicting commands through cen-
tralization is encouraged by the crew proxy approach of Schreckenghost et al. [7]. Our
model for coordinating transfer-of-control strategies to be sensitive to possible bother to
users is motivated by the work of Fleming [2] on modeling bother. Its locking strategy
contrasts with that of Martin et al. [3], proposed as a user-driven method for coordi-
nating agent actions. In short, our research aims to advance the state of research in the
design of adjustable autonomy agents, to consider collectives of agents.

References

1. M. Cheng and R. Cohen. Reasoning about Interaction in a Multi-User System. In Proceedings
of the Tenth International Conference on User Modeling, July 24-29 2005.

2. M. Fleming and R. Cohen. A Decision Procedure for Autonomous Agents to Reason About
Interaction With Humans. In The AAAI 2004 Spring Symposium on Interaction between Hu-
mans and Autonomous Systems over Extended Operation, pages 81-86, 2004.

3. C. Martin, D. Schreckenghost, and R. Bonasso. Augmenting Automated Control Software to
Interact with Multiple Humans. In Proceeedings of AAAIO4 Spring Symposium on Interaction
Between Humans, 2004.

4. C. Micacchi. An Architecture for Multi-Agent Systems Operating in Soft Real-Time Environ-
ments With Unexpected Events. Master’s thesis, University of Waterloo, Waterloo, Canada,
2004.

5. P. Scerri, L. Johnson, D. Pynadath, P. Rosenbloom, M. Si, N. Schurr, and M. Tambe. A
prototype infrastructure for distributed robot-agent-person teams. In AAMAS-03, 2003.

6. P. Scerri, D. Pynadath, and M. Tambe. Adjustable Autonomy for the Real World. In Agent
Autonomy. Kluwer Publishers, 2004.

7. D. Schreckenghost, C. Martin, P. Bonasso, D. Kortenkamp, T. Miliam, and C. Thronesbery.
Supporting Group Interaction Among Humans and Autonomous Agents. In Proceedings of
the AAAI2002 Workshop on Autonomy, Delegation, and Control: From Inter-agent to Groups,
pages 72-77, Menlo Park, CA, 2002. AAAI Press.

ARES 2: A Tool for Evaluating Cooperative and
Competitive Multi-agent Systems

Jorg Denzinger and Jordan Kidney

Dep. of Computer Science, University of Calgary
{denzinge, kidney}@cpsc.ucalgary.ca

Abstract. The Agent Rescue Emergency Simulator (ARES) system provides a
simplified rescue scenario similar to Robocup Rescue for use in the educational
or research fields when evaluating multi-agent systems. The environment within
ARES abstracts ideas down to key features while still allowing for a wide range of
scenarios requiring different skills to be presented to the agents. This is achieved
by combining different features together and changing the configuration of the en-
vironmental rules incorporated in ARES. With the simplified environment ARES
can be used for quick evaluations of concepts based upon the results from a range
of different configurations of the system. The results from these tests can be used
as a basis for further experiments when transitioning the work from a theoreti-
cal level to more real world scenarios, where the requirement for a more complex
system is needed. Our newest version of ARES, ARES 2, allows for scenarios that
range from cooperation between all agents to strong competitiveness of agents or
even agent teams.

1 Introduction

The Agent Rescue Emergency Simulator (ARES) system (see [4,2]) provides a sim-
plified rescue scenario similar to Robocup Rescue (see [5, 6]). The Robocup initiatives
helped to expand the field of multi-agent systems, bringing many different areas to-
gether in a single competition. From this initiative, a set of simulators was produced for
the competitions, allowing the agents to interact without robotic bodies. These simu-
lators also provided a consistent environment for evaluating teams entered in the com-
petition. Slowly these simulators have started to find their way into the research and
educational fields (see [1, 3]), but several problems have surfaced. One such problem
is the fact that the simulators were created for a very specific application, mainly the
environment needed for the competition. As a result, the range of concepts that can be
demonstrated is limited to what the competition required. What is needed now is to
extend upon the success of the simulators from the Robocup initiatives, but with the
main goal of providing a flexible testbed for the research and educational communities,
allowing for the quick evaluation of new concepts in multi-agent systems. Our solution
to this problem is the ARES system, which follows the same ideas as Robocup rescue,
but focuses on providing a very flexible environment that can be tailored to particular
research or educational needs.

The basic ideas realized in ARES 2 are as follows. The environment simulated
within ARES 2 is a city after an earthquake has struck (similar to Robocup rescue).

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 38-42, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

ARES 2: A Tool for Evaluating Cooperative and Competitive Multi-agent Systems 39

The components of the environment have been simplified down to what we consider to
be the basic features relevant for multi-agent systems. As such we do not concentrate
upon providing an environment to simulate real world scenarios, but one that concen-
trates on providing an area for demonstrating a range of different concepts. This allows
us to break some real world rules with the main goal of allowing a range of concepts
that can be demonstrated through the use of the system.

Next for the agents there are two basic tasks, finding survivors and rescuing them,
that emphasize the need for independent exploration, coordination, and cooperation
between agents. Agents have a rather limited set of actions, including the ability to
communicate and they act within a world that is more or less known to them. The agents
acting in a scenario in ARES 2 might be one team or they can be in several teams, thus
allowing various combinations of cooperation aspects and competition aspects.

A key concept in ARES 2 are the so-called world rules that result in configuring
key features of the ARES 2 world scenarios. Selecting a set of world rules essentially
creates basic requirements on the agents and the scenarios using this set of rules. And
if we assume that we want to develop agents and their interactions in such a way as
to optimize their task performance, then different sets of world rules create different
agent goals and different requirements on what is a good behavior. This achieves a high
flexibility for the use of ARES 2 to evaluate teams of agents, since we can target par-
ticular aspects of multi-agent systems by choosing the right set of world rules. Features
that are influenced by world rules include competitiveness between agent teams, cost
of communication, precision of world information and observability of the world, or
fulfilling the basic survival needs of agents.

So far, ARES and ARES 2 have been mostly used in educational settings, although
several researchers have expressed an interest in them for evaluating agent teams using
particular concepts. In the educational setting, the possibility of changing world rules
has proved very useful, since plagiarism essentially is eliminated. With the addition of
world rules influencing the competitiveness and interaction possibilities of several agent
teams acting in the same scenario in ARES 2, concepts like trust and communication
outside of the own team can now also be evaluated with ARES simulations.

2 ARES 2: Basic Ideas
For a more technical explanation of the ARES System, please refer to [4, 2].

2.1 The Environment

The environment simulated within ARES 2 is based upon a city that has been hit by an
earthquake. This is very similar to Robocup Rescue, but the objects within the world
and the actions that can been taken have been simplified down to what we consider to
be the basic features relevant for multi-agent systems. Now depending upon the config-
uration of the system the agents will either have the ability to work with all the agents
currently connected to the system or only with agents that have been declared as part
of their group. This allows for the creation of environmental rules that can push the
interaction between teams of agents from a cooperative scenario to a more competitive
environment. Agents within the system interact within a two dimensional grid environ-

40 J. Denzinger and J. Kidney

ment built up of squares. Each square in the grid represents a single point where an agent
can influence the environment directly. The agents “jump” from square to square as they
move throughout the world. Each square in the world has the following properties:

1. It can be of one of the following types: (1) Normal - agents can safely move onto
the square. (2) Fire - the entire square is on fire. (3) Killer - represents a zone where
agents will die (like holes, etc ...) and finally (4) Charging - a zone that can be used
to regain lost energy

2. It consists of a stack of layers (build up of material), where each layer holds only a
single object. Currently there are only three types of objects in the ARES system:
(1) Rubble - represents material that has to be removed by the agents. Each rubble
object has as associated value the number of agents that are needed to remove this
object. This forces agents to coordinate and come together upon the same square in
the world at the same time to remove the object. (2)Survivor - a single person that
can be saved in the world. When they are saved, the survivors are simply "beamed"
to safety. (3) Survivor Group - this is the same as a survivor, it just allows for
multiple survivors to be located in a single layer on the stack.

3. Each square also has an associated move cost value; this value indicates the cost in
energy for moving onto the square from any direction

In general, the interaction of an agent with ARES 2 consists of the agent sending
messages indicating its actions (including any communication actions to other agents)
to ARES 2 when they are informed that it is their turn to run. Once ARES 2 has given
all agents a chance to run and send an action it then applies all the actions to the current
state of the environment. Next each agent is informed about the results of their actions
(if a reply is expected). This process is repeated until the specified number of simula-
tion steps has been met. For the agents in the environment, each action that they take
has a corresponding consequence based upon the type of action that is being taken. In
the ARES 2 system, agent actions fall into two groups: (1) Actions that influence the
environment directly. These actions include things such as moving around, removing
rubble, etc. With the execution of these actions the agents lose energy, as a result the
agents must manage their energy usage and when they must recharge. (2) Communi-
cation/Observational actions. Actions such as communication and observing squares in
other areas of the world fall into this group. With the execution of these actions the
agents have to deal with things such as communication delays and distortion of infor-
mation.

2.2 World Rules, Environment Features, and Their Connection to Multi-agent
Systems

As already stated, a major goal in the development of ARES and ARES 2 was to provide
a lot of possibilities of how to configure the environment to allow for different foci on
the general problems of multi-agent systems. ARES 2 achieves this by implementing
different so-called world rules that describe how effects in the environment can be or
have to be achieved by the agents. This is possible in ARES 2, because of the rather
simplified worlds that agents are acting in within ARES 2.

ARES 2: A Tool for Evaluating Cooperative and Competitive Multi-agent Systems 41

By combining the selected world rules for different world features, the resulting
environment will require rather different strategies by the agents to be successful. And
these strategies will focus on different aspects of the agents, of their implementation,
and of how the agents interact. The world features new in ARES 2 (compared to ARES)
are how to deal with different agent teams interacting in the same simulation run. For
example, by allowing multiple distinct teams to participate in the simulation the agents
are presented with a competitive environment to work in. By changing the way scoring
is done for saving survivors the ways that agents from different teams work together
will change. By giving the point to all who participate it gives the opportunity for all
agents to work together and gain a mutual benefit. If we just change the scoring to
give the point to the team who had the most participants in the save action then the
environment becomes a little bit more hostile for agents from different teams to work
together and always gain a mutual benefit. The main world features influenced by world
rules in ARES 2 are as follows:

1. Score for saving survivors - changes to this feature effect the competitiveness of the
environment.

2. Single or multiple teams in the simulation - cooperative vs competitive environ-
ment.

3. Maximum number of agents required to remove rubble - causes the agents to deal
with resource allocation issues by having to get other agents to help in the removal
of the rubble object.

4. Energy Control - agents need to deal with monitoring their energy level and regain-
ing energy back as it is needed. In some configurations of the system this becomes
a resource allocation issue as the agents may have to move onto a specific square
in the world to regain energy.

5. Communication - changes in how the agents communicate effect everything from
agent models and cooperation concepts to resource allocation. For example, by
limiting the amount of communication an agent can do in one step, the number of
steps needed to get help for a rubble removal can become higher and the general
task more difficult.

It should be noted that individual features can be influenced by several world rules,
which allows us to provide a large variety of feature instantiations.

3 Experimental Evaluation

So far, our experiences with ARES and ARES 2 have been in the educational field.
The ARES system has been used for the past three years at the graduate level —once
at the undergraduate level- for courses on multi agent systems at the University of
Calgary. Feedback from the students has shown a positive image of the ARES system.
The system has provided a consistent way to compare the agents produced by different
teams in the class. Each time the class has been taught different configurations of the
world rules have been used to present the students with a different challenge while
still working in the common rescue environment. Another reason for the change in the
world rules has been to prevent the "reuse" issue of students using everything from

42 J. Denzinger and J. Kidney

agents produced in previous versions of the class. The thought behind these variations
is to make an environment where agents that in one year would not work properly in the
newly changed environment. This would mean that they would be slower at finishing
tasks, or would be at a greatly elevated risk of dieing off faster. The students could
look at old designs but would have to develop their own ideas and implementation
to deal with the new environment. Each time the multi-agent course has been taught
there has been a noticeable improvement in the quality of the agents produced by the
students. Students in the latest version of the class were able to take into account faults
and observed problems of the teams from previous years and could improve upon the
concepts successful in previous years in their own way. Overall many positive results
have come from using the ARES and ARES 2 system in the course and not only were
the students rather enthusiastic about applying what they have learned in the lectures to
a scenario where even the instructor did not know exactly what the best concepts would
be, concepts have been developed that have the potential to be used in more realistic
testbeds or scenarios.

4 Conclusion

We presented the ARES 2 system, a testbed for evaluating multi-agent systems that was
motivated by the Robocup initiatives, but aims at providing much more flexibility in
the environments it offers to the agents. ARES 2 in particular introduced the ability of
having scenarios with several competing teams interacting at the same time and allow-
ing for some cooperation between these teams. While this is rather common in the real
world, the known testbeds for multi-agent systems, including the Robocup testbeds do
not offer this possibility. Our use of ARES and ARES 2 as testbed for systems build as
assignments for multi-agent courses showed that the simplified worlds of ARES make
it rather easy to build agents for ARES. In the future, we want to make ARES even
more flexible by adding more world rules, respectively more instantiations of the cur-
rent ones. We also hope to attract other researchers to use ARES not only in educational
settings, but also to evaluate their research results at a higher level.

References

1. Paul Buhler, José M. Vidal. Biter: A platform for the teaching and research of multiagent
systems’ design using robocup, Proceedings of the Robocup International Symposium, 2001.

2. Jorg Denzinger, Jordan Kidney, Melissa Bergen. Teaching Cooperation in Multi-Agent Sys-
tems with the help of the ARES System, Proc. WCCCE-03, Courtenay, 2003.

3. F. Heintz, J. Kummeneje. Simulated robocup in university undergraduate education, technical
report., Department of Computer and Information Science, Linkoping University, 2000.

4. Jordan Kidney. ARES Website http://www.cpsc.ucalgary.ca/kidney/ARES (as viewed on
March 8, 2004).

5. RoboCup Rescue. http://jelly.cs.kobe-u.ac.jp/robocup-rescue/ (as viewed on Nov 24, 2003).

6. RoboCup. http://www.robocup.org/ (as viewed on Nov 24, 2003).

Multiagent Systems Viewed as Distributed
Scheduling Systems: Methodology and
Experiments

Sébastien Paquet, Nicolas Bernier, and Brahim Chaib-draa

DAMAS Laboratory, Department of Computer Science,
and Software Engineering, Laval University, Canada
{spaquet, bernier, chaib}@damas.ift.ulaval.ca

Abstract. In this article, we present a design technique that facilitates
the work of extracting and defining the tasks scheduling problem for a
multiagent system. We also compare a centralized scheduling approach to
a decentralized scheduling approach to see the difference in the efficiency
of the schedules and the amount of information transmitted between the
agents. Our experimental results show that the decentralized approach
needs less messages, while being as efficient as the centralized approach.

1 Introduction

In this short paper, we present how a multiagent problem can be modelled
as a task scheduling problem and how this formulation can help to find good
scheduling algorithms. We define scheduling as the problem of assigning limited
resources to tasks over time to optimize one or more objectives [1]. Furthermore,
in multiagent systems, the scheduling can be done in a centralized or decentral-
ized way [2] and in this article we study the impact on the agents’ efficiency and
on the amount of information transmitted when using these two approaches.

2 Modelling of the Tasks Scheduling System

In a tasks scheduling system, we use a set of resources to accomplish a set of
tasks in an order maximizing an optimization criterion [3]. For example, we
could want to accomplish the set of tasks as fast as possible or we could want
to accomplish as many tasks as possible in a given time. This article focuses
on multiagent systems in which the work of some agents can be described as a
tasks scheduling system. So, agents are considered as resources that can complete
tasks. Evidently, not all multiagent systems can be modelled as a task scheduling
system. However, it can be possible in several cases, because in many multiagent
systems, agents have to accomplish tasks and the order of these tasks influences
the efficiency of the system. To structure the modeling process, we present a
methodology with three steps: (1) scheduling problem definition, (2) scheduler
type definition and (3) scheduling algorithm definition.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 43-47, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

44 S. Paquet, N. Bernier, and B. Chaib-draa

2.1 First Step: Scheduling Problem Definition

Firstly, we have to identify the characteristics of the scheduling problem which
consists of defining the set of tasks to execute, the tasks’ parameters (execution
cost, deadline, etc.) and the optimization criterion. When the scheduling problem
has been carefully analyzed, we can formalize it using the following notation [4].
A scheduling problem, with the goal of managing a set of tasks T', is described
with three fields separated with the character ”|”, as in: a | 3 | 7.

— « : the machines’ environment. This field tells how many machines are
present and what their characteristics are.
1: Mono-machine environment.
P,, : Multi-machines environment with m machines.

— [: the constraints and the characteristics. This field tells for example, if the
tasks have deadlines or if there is a cost to change from one task to another.
pj : The execution cost of the task j.

d; © The deadline of the task j.
sjk ¢ The cost to change from task j to task k.

— 7 : the optimization criterion. This field defines what the scheduler is sup-
posed to optimize.
>-C; : The sum of completion times of all tasks.
>-U; : The sum of unit penalty of all tasks where:

o 1iij>dj
U]_{O if not

2.2 Second Step: Scheduler Type Definition

The scheduler, in a scheduling system, represents the abstraction level where the
tasks ordering is decided in order to maximize the optimization criterion. We
can create two main categories of scheduler: centralized and decentralized.

In the centralized approach, the tasks ordering is done by only one agent. This
agent has to schedule and distribute the tasks for all the agents. To do that, it
needs a global knowledge of the environment that it can acquire by exploration
or by inter-agent communication.

In the distributed approach, the tasks ordering is not the responsibility of one
agent, but many agents. All agents schedule their own tasks according to what
they know about the environment. However, to stay coordinated, they need to
synchronize themselves using inter-agent communication.

2.3 Third Step: Scheduling Algorithm Definition

In this third step, we have to choose the task scheduling algorithm to solve the
problem defined in the first step. Many optimal and approximation algorithms
already exist in the literature to solve different types of scheduling problems [5].
This shows the advantage of formalizing a multiagent problem in a scheduling
formalism because, by doing so, we can search in the scheduling theory literature
to find good algorithms for our problem.

Multiagent Systems Viewed as Distributed Scheduling Systems 45

3 Application to a Multiagent Problem

In this section, we show how to use our methodology in a multiagent system
(the RoboCupRescue simulation) by explaining all the steps and specially focus
on the scheduler part. This simulation environment consists of a simulation of
an earthquake happening in a city [6]. The goal of the agents (representing
firefighters, policemen and ambulance teams) is to minimize the damages caused
by a big earthquake, such as civilians buried, buildings on fire and roads blocked.

In this article, we focus only on the work of the ambulance team agents. In
the simulation there can be between 0 to 8 ambulance team agents that are in
charge of rescuing civilians. The civilians are wounded when they are buried
in collapsed buildings and they can die if they are not rescued fast enough.
Rescuing a civilian is considered as a task and since the health state of a civilian
is uncertain, the parameters of the tasks could change in time. Also, there are
important constraints on the communications, thus it becomes critical to manage
them efficiently.

3.1 Step 1: Scheduling Problem Definition

To rescue as many civilians as possible, ambulance team agents have to make a
choice about in which order they will try to rescue the civilians. In this context,
the task’s duration is the time needed to save a civilian and the deadline of a
task is the civilian’s estimated death time.

Formally, our problem can be expressed as: Py,|s;i| > U;. The problem as
it is defined has been proven to be NP-Hard [7]. Thus, we have to relax some
constraints and make some changes to the original problem so that it can become
solvable in polynomial time. First, we have relaxed the s;;, constraint by giving
a value of 0 for each s;; and by adding a constant travel time to the rescuing
time. We also modified the scheduling problem definition by setting m = 1. In
other words, it means that we consider that we have only one agent. Since this
is not true, in practice it will result in all agents working on the same civilian
because, for the scheduler, the group of agents is only seen as one indivisible
resource.

Formally, our new problem can now be defined as: 1||)" U;, which means
that we consider a centralized execution in which all agents are considered to
be one big resource working on one task at a time and trying to maximize the
number of tasks accomplished in the time allowed.

3.2 Step 2: Scheduler Type Definition

In this step, we must choose between centralized and distributed scheduling. For
this article, we compare both approaches in order to schedule the tasks of the
ambulance team agents in the RoboCupRescue simulation.

In this article, we propose an implementation for each one of the two ap-
proaches and we compare their performance on the efficiency of the schedule
and on the required amount of communication. Both approaches use the same
scheduling algorithm, i.e. EDD (Earliest Due Date) [8]; we will justify this choice

46 S. Paquet, N. Bernier, and B. Chaib-draa

in section 3.3. This greedy algorithm orders a set of tasks by sorting them in
increasing order of their deadline. An interesting property of this algorithm is
that it is possible to have a distributed version that does not lose any efficiency.

With a centralized scheduler, there is one agent taking alone the decision
about the ordering of the tasks. In brief, the steps of the scheduling process are:

1. All agents send their perceptions about possible tasks to the scheduler agent.
2. The scheduler agent combines all the information received.

3. The scheduler agent applies the EDD algorithm to schedule the tasks.

4. The scheduler agent sends the best global task to all agents.

As we can see, at step 1 all the agents send the information they know about
all possible tasks. These messages can be quite long. Afterwards, at step 4, the
scheduler agent sends the best global task to all agents, which then accomplish it.

In the decentralized approach, the scheduler is an entity composed of many
agents. In brief, the steps of the scheduling process are:

1. All agents build their own list of possible tasks.

All agents apply the EDD algorithm to find the best local task to accomplish.
All agents broadcast their best local task to all other ambulance team agents.
All agents build a list with all the best local tasks received.

All agents apply EDD to find the best global task to accomplish.

Sl N

As we can see, agents send messages only at step 3 and those messages are
quite small because they contain only the information about one task.

3.3 Step 3: Scheduling Algorithm Definition

In the preceding step, we have already identified the scheduling algorithm, which
is EDD. This algorithm can be executed in time O(nlog,) [9]. This type of
greedy algorithm is well adapted to a problem of decentralized decision making
because it is never necessary to reconsider a decision previously made. This
enables us in practice to find the next task to accomplish in time O(n). This
algorithm is interesting because it is optimal if there is no overload, i.e. it is
possible to accomplish all the tasks in the given time. Although some overload
could happen in our environment, the performances of this algorithm stay good
and its simplicity enables us to demonstrate how we can distribute the decision
making in a scheduling system.

4 Results

The goal of these tests is to compare the performances and the communication
burden of the decentralized scheduling approach compared to the centralized ap-
proach. For our experiments, we have created six different simulation scenarios.

Figure 1 presents the comparison between the performances of each approach.
The centralized approach is slightly better in five scenarios out of six. However,
this difference is really subtle and if we consider the 95% confidence interval, the
two approaches can be considered equal.

Multiagent Systems Viewed as Distributed Scheduling Systems 47

600000

B centralized Odistributed mcentralized O distributed

500000

£ 400000
a

Score

H
& 300000

200000

100000

1 2 3 4 5 6
Scenarios Scenarios

Fig. 1. Performances Fig. 2. Number of bytes sent

However, the diminution of the communication burden is really at the ad-
vantage of the decentralized approach. Figure 2 presents the comparison of the
number of bytes sent by the agents. On average, there is a 30% reduction of the
quantity of information sent. This is mainly because the agents do not have to
send all the information they know, but only the most interesting task.

5 Conclusion

In short, we have presented a methodology that can take advantage of algorithms
developed in scheduling theory and to apply them in multiagent settings. Con-
versely, we have shown how we can use some multiagent ideas to decentralized
a scheduling algorithm and gain on the amount of information transmitted.

We have demonstrated the efficiency of the decentralized approach in a com-
plex environment (partially observable, uncertain and real-time). In brief, the
decentralized approach is able to obtain the same performance with 30% less
information sent. Future work could be to also distribute the execution and thus
enabling the agents to be split on more than one problem at a time.

References

1. Mali, A.D., Kambhampati, S.: Distributed Planning. In: The Encyclopaedia of
Distributed Computing. Kluwer Academic Publishers (1999)

2. Durfee, E.H.: Distributed Problem Solving and Planning. In Weiss, G., ed.: Multi-
agent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT
Press, Cambridge, MA (1999) 121-164

3. French, S.: Sequencing and Scheduling. Wiley (1982)

4. Lawer, E., Lenstra, J., Kan, A.R.: Recent developments in deterministic sequencing
scheduling : A servey. Deterministic and Stochastic Scheduling (1982) 35-74

5. Blazewick, J.: Scheduling computer and manufacturing processes. Springer (2001)

6. Kitano, H.: Robocup rescue: A grand challenge for multi-agent systems. In: Pro-
ceedings of ICMAS 2000, Boston, MA (2000)

7. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice Hall (1995)

8. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness. Re-
search Report 43, Management Science, University of California (1955)

9. Brucker, P.: Scheduling Algorithms. Springer (2001)

Planning for a Mobile Robot to Attend a Conference

Eric Beaudry, Froduald Kabanza, and Francois Michaud

Université de Sherbrooke, Sherbrooke, Canada
{eric .beaudry, froduald.kabanza, francois .michaud}@usherbrooke .ca

Abstract. The AAAI Mobile Robot Challenge requires robots to start from the
entrance of the conference site, find their own way to the registration desk, so-
cially interact with people and perform volunteer duties as required, then report
at a prescribed time in a conference hall to give a talk and answer questions.
These specifications convey some interesting planning problems that appear to
be too complex for some of the most efficient Al planning systems that we an-
alyzed. Based on this analysis, we present a new planning approach that we are
developing to meet the challenge. Preliminary results show that our approach per-
forms much better on robot conference planning problems than any of the other
Al planning systems we tested.

1 Introduction

The AAAI Mobile Robot Challenge, introduced in 1999, is to have a robot start at the
entrance of the conference site, find the registration desk, register, perform volunteer
duties and give a presentation [6]. The long-term objective is to have robots receive no
more information than usually given to human participants attending the conference.
These specifications imply that robots must be able to plan tasks, such as registering,
navigating to the presentation room and making a presentation, while at the same time
interacting with people, ensuring its energetic autonomy and accepting duties.

We plan to participate in the 2005 AAAI Challenge. For this endeavour, we have
been developing a planning system to be integrated with the basic robot behavior-
producing modules to recommend tasks the robot should be working on at a given point
of execution. Planning problems we are dealing with involve metric time constraints
(e.g., the robot has to be on time for it presentation), resource constraints (e.g., complex
robot processes such as navigation, map registration and planning consume more bat-
tery power), safety goals generated reactively at unpredicted times (e.g., charging the
battery whenever it becomes low), preferences among goals (e.g., it is more critical to
charge the battery than doing anything else; or presenting the paper on time has priority
over helping other attendees) and uncertainty in plan execution (e.g., the time it takes
to navigate from one point to another depends on the accuracy of the robot’s navigation
behaviour).

The decisions about which features are to be handled using an automated planning
system and which ones are to be managed by the robot behavior-producing modules
are ultimately a matter of design choice, depending on the capabilities of the planning
system being used. We may choose to ignore uncertainty during the planning phase,
and handle it at the level of the robot architecture, by generating deterministic plans

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 48-52, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Planning for a Mobile Robot to Attend a Conference 49

that are sequences of actions, and monitoring failures to re-invoke the planner whenever
necessary, as is done with Xavier [4]. It is also conceivable not to involve any automated
planning at all and still manage to make the robot accomplish complex tasks, as did
many teams participating in previous AAAI Challenges [8].

In our case, we have decided to include some form of planning to increase modu-
larity by having automatically behaviors. This should facilitate reconfigurations of the
robot onsite as well as adaptation of the robot to new applications that are similar to
existing ones. Experimenting with existing probabilistic and nondeterministic planners
such as SGP [12] and MBP [1] to handle some degree of uncertainty, we observed that
they do not scale up to the complexity of problems in the AAAI Challenge. Using deter-
ministic planners (SAPA [2], Metric-FF [5] and SHOP2 [9], which are among today’s
most efficient planning systems) and assuming an interleaving of execution monitor-
ing and re-planning for failure situations, the performance observed revealed also to be
insufficient.

A planning problem is in general both an action selection problem (i.e., selecting
actions relevant to the goal) and a scheduling problem (i.e., assigning resources to ac-
tions, include time resource) [11]. The problem of planning to attend a conference is
more biased towards scheduling then towards action selection, whereas the planners we
tested are biased towards action selection or task decomposition. Based on these obser-
vations we designed a planner that has a task scheduling bias (i.e., it more often tries to
assign tasks to time windows than examining alternate task decomposition methods). It
combines HTN decomposition from SHOP2 [9], with plan post-processing ideas from
SAPA [2], to obtain plans with time window execution flexibilities. Preliminary results
show that our algorithm performs much better than the others, with a sufficient level
of performance that will complement other decision modules embedded in the robot’s
decison-making architecture.

2 Robot Platform

The robot platform we intend to use is the U2S robot (see Figure 1a), developed at
Université de Sherbrooke. It will be equipped with autonomous navigation capabilities
using a laser SICK range finder, visual recognition of badges, faces and people, au-
dio sound source localization and separation capabilities, and a graphical tactile inter-
face. The decision-making architecture is based on EMIB [7] (see Figure 1b). EMIB’s
behavior-producing modules (BPM) are essentially processes that produce commands
that directly control the robot’s actuators. Primitive tasks are conceptually similar to
abstract primitive tasks [9] or actions [2] in Al planning, with the key difference that
in EMIB they are not directly executable by the robot. Rather, they are interpreted
as recommendations in determining what BPM are desirable and which ones are not,
and these recommendations compete with recommendations from other recommenda-
tion modules, using an emotion/intentional arbitration metaphore, to produce the actual
robot commands.

From a planning application point of view, many robot architectures have already
integrated task planning and robot execution, including the Procedural Reasoning Sys-
tem (PRS) [3] and Xavier [4]. Our approach differs with these approaches by having

50 E. Beaudry, F. Kabanza, and F. Michaud

MOTIVES Motivational
Level

/

PERCEPTUAL

INSTINCTUAL

R ==

Recommendation
Behaviour. ‘ a ﬂ:ha v‘t.ur.
4 civaton

SELECTION

Exploilation configuration data

Behavioural

J__ [BehaveurProducing Madule Lovel Y
y J [SehavourProdudng Wodile b ARE!TR&TloN]
rd #;E Behaviour-Producng Modube & I

Sensory
nputs

(a) U2S robot (b) EMIB Architecture

Commands

Fig. 1. Our robotics platform and decision mechanism

the planner more tightly coupled with the underlying behaviour-based architecture. Our
planner competes with the other robot components that recommend its basic actions,
hence preserving the design principles of behaviour-based robot programming. This in
line with the proposal in [10], but our approach is more general in that EMIB decouples
behavior activation conditions from the corresponding actuators. Therefore, the planner
is not a central component of the architecture, of which all the decisions will be based.
This limitation of the scope of intervention of the planner allows us to use other mecha-
nisms more suitable to handle unpredictable events. Integrating a planner into EMIB is
one issue, and designing the planner itself is another. So far, efforts in the development
have been on implementing the planner. We tested it using a simplified simulator in
which EMIB’s primitive behaviors are directly implemented without going through the
emotion/intentional arbitration.

3 Reactive Planning Process

To deal with uncertainty, a deterministic planning algorithm is invoked in a reactive
loop that combines a plan monitor that monitors the execution of a plan, to update the
current plan by removing completed tasks, inserting new tasks, removing existing tasks
in order to accommodate tasks with a higher priority, (e.g., it changes its mission or
the task turns out to be infeasible), or repairing its plan when failure occurs (e.g., by
inserting new tasks to re-enable a failed task precondition, taking into account its time
execution window). Tasks priorities are handled essentially via plan merging by accom-
modating first tasks with a higher priority. For instance, once the robot has its plan for
the mandatory tasks, it should accept volunteer duties depending on time availability.
This is done by first trying to merge the duties with existing tasks using heuristics. If
unsuccessful, a systematic merger is attempted by planning for a conjunction of manda-
tory and volunteer tasks. If still unsuccessful, the volunteer duties are refused.

Planning for a Mobile Robot to Attend a Conference 51

Plans are generated with safety constraints such as maintaining a minimum bat-
tery level. However, at execution time, a plan may violate them if something unex-
pectedly goes wrong (e.g., going to the conference room may take longer than ex-
pected, overusing the battery in the process). This situation can be detected by the plan
monitoring process, causing the introduction of battery-recharge task at an appropriate
time.

4 Conference Planner

Our planner (ConfPlan) is a HTN planner but includes a plan post-processing proce-
dure and a built-in time variable in the state representation of which the planner can
take advantage. Methods that decompose tasks into smaller tasks can add metric time
constraints. With these new constraints, some partial orders of tasks may be discovered.
Since our domain is biased towards scheduling, these partial orders help to reduce the
search space. Like SHOP2, when primitive tasks are introduced in the resulting plan,
we apply effects on the current state. The current-time variable is increased as in SAPA.
Once a valid plan is generated, it is passed to the post-processing phase. This proce-
dure takes as input a total ordered plan and generates a partial ordered plan for more
flexibility at execution time.

120 ’
100 :
5 B - —& - Metric-FF
2 .
H ‘ &
i 60 7 i - & - Sapa
: ' '
£ tle '
B o YT —a— SHOP2
Bl
20 A i
./. i * ConfPlan
o]
08 . v —
0 2 4 B 8 10 12
Problem size (nb goals)

Fig. 2. Performance comparaison

Figure 2 compares ConfPlan to SAPA [2], Metric-FF [5] and SHOP2 [9], on plan-
ning problems of different complexities in the conference domain. The results show that
ConfPlan solves more problems in the set than any of the three other planners. These
problems involve goals of registering at the registration desk, making (or assisting to)
one or more presentations at specified periods, presenting posters and taking picture
of interesting posters. SAPA has timed initial literals of which we took advantage. For
Metric-FF and SHOP2, whi ch do not support them, we introduced a metric time vari-
able. Because we need a fast reactive planning engine, plan solutions taking more than
two minutes were rejected.

52 E. Beaudry, F. Kabanza, and F. Michaud

5 Conclusion

From a general Al planning perspective, our planner improves SHOP2 algorithm by
adding time constraints and integrating SAPA like post-processing to obtain flexibil-
ity. This flexibility will be crucial when repairing a plan or merging in new tasks. As
mentioned before, the development of ConfPlan is primarily motivated by the need of
a planning system into the EMIB robot architecture with the aim of participating at
the next 2005 AAAI Challenge. We have just iniitiated the integration work. It remains
interesting to see how the planner will behave on problems different to the conference
domain: we are currently in the process of assessing this.

Acknowledgment

This research is supported by the Natural Sciences and Engineering Research Coun-
cil of Canada and the Canada Research Chair program. We would also like to thank
anonymous reviewers, Sylvain Clavette and Ian Bailey for helpful comments.

References

1. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147(1-2):35-84, 2003.

2. M.B. Do and S. Kambhampati. Sapa: A scalable multi-objective metric temporal planner.
Journal of Artificial Intelligence Research, 20:155-194, 2003.

3. Ingrand F, F and O. Despouys. Extending procedural reasoning toward robot actions plan-
ning. In /CRA, pages 9-14, 2001.

4. K.Z. Haigh and M. Veloso. Interleaving planning and robot execution for asynchronous user
requests. Autonomous Robots, March 1998.

5. J. Hoffmann. The Metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence, 20:291-341, 2003.

6. B.A. Maxwell, W. Smart, A. Jacoff, J. Casper, B. Weiss, J. Scholtz, H. Yanco, M. Micire,
A. Stroupe, D. Stormont, and T. Lauwers. 2003 AAAI robot competition and exhibition. A/
Magazine, 25(2):68-80, Summer 2004.

7. F. Michaud. EMIB - computational architecture based on emotion and motivation for in-
tentional selection and configuration of behaviour-producing modules. Cognitive Science
Quarterly, pages 340-361, 2002.

8. F. Michaud, J. Audet, D. Létourneau, L. Lussier, C. Théberge-Turmel, and S. Caron. Experi-
ences with an autonomous robot attending the AAAI conference. IEEE Intelligent Systems,
16(5):23-29, 2001.

9. D.S. Nau, T.C. Au, O. llghami, U. Kuter, J.W. Murdock, D. Wu, and F. Yaman. SHOP2: An
HTN planning system. Journal of Artificial Intelligence Research, 20:379-404, 2003.

10. M. Nicolescu and M. J. Mataric. Deriving and using abstract representation in behavior-
based systems. In National Conference on Artificial Intelligence 00, page 1087, 2000.

11. D.E. Smith, J. Frank, and A.R. Jonsson. Bridging the gap between planning and scheduling.
Knowledge Engineering Review, 15(1), 2000.

12. D.S. Weld, C.R. Anderson, and D.E. Smith. Extending graphplan to handle uncertainty &
sensing actions. In National Conference on Artificial Intelligence ’98, pages 897-904, 1998.

A Decision Theoretic Meta-reasoner for
Constraint Optimization

Jingfang Zheng and Michael C. Horsch

Department of Computer Science,
University of Saskatchewan,
Saskatoon, Saskatchewan, Canada

Abstract. Solving constraint optimization problems is hard because it is not
enough to find the best solution; an algorithm does not know a candidate is the
best solution until it has proven that there are no better solutions. The proof can
be long, compared to the time spent to find a good solution. In the cases where
there are resource bounds, the proof of optimality may not be achievable and a
tradeoff needs to be made between the solution quality and the cost due to the
time delay. We propose a decision theoretic meta-reasoning-guided COP solver
to address this issue. By choosing the action with the estimated maximal
expected utility, the meta-reasoner finds a stopping point with a good tradeoff
between the solution quality and the time cost.

1 Introduction

Constraint optimization problems (COPs) can be very much harder than solving
constraint satisfaction problems (CSPs), because CSP solving algorithms can stop
once a solution is obtained; but for COP solving, unless the optimal cost is known
before hand, an algorithm that optimizes COPs cannot stop until it has proven that a
solution is optimal. Even problems of modest size can be costly in terms of time. For
some applications, the time cost may be as important as the solution quality.

A simple approach to this tradeoff is to spend as much time as is allowed by the
application. In effect, this approach amounts to spending the user’s entire budget for
computation. When time is cheap, this approach may be effective, but when time is
costly, a user may prefer a good solution sooner than a better solution later. Another
approach is to search for a solution whose quality is no less than a given quality. This
approach may result in solutions whose quality could be improved with a little more
computation, or as before, solutions whose quality is not justified by the expense of
the computation. By explicitly considering the costs and benefits of computation, a
system may be able to optimize the comprehensive value of a solution, namely the
quality net of computational costs.

In this paper we present the design of a practical COP solver that uses decision
theoretic meta-reasoning to control computation. In this approach, computational
actions are associated with utilities [Horvitz 1989, Russell & Wefald 1991]. The value
of the computational action is the solution quality that results, and the cost is
associated with resources used in the solving (e.g., time). We apply this approach by

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 53 -65, 2005.
© Springer-Verlag Berlin Heidelberg 2005

54 J. Zheng and M.C. Horsch

monitoring the status of the solver and deciding to halt when the solver seems trapped
in a proof of optimality. Since different users have different requirements for time and
solution quality, we allow for different user preference models. Our results show that
the meta-reasoning solver obtains a good trade-off when resource costs are high.

Our work differs from that of Horvitz et al. [2001], in that the decision problem is
different. For a satisfiability problem, every solution is equally valuable, and the dec-
ision problem faced by a stochastic local search method is to choose whether to restart
the search, or carry on from the current location. In a COP, solutions vary in quality,
and the tradeoff is more flexible since the value of the solution is part of the decision.

Many of the issues addressed in the domain of planning under uncertainty (eg,
[Boddy and Dean, 1994] and [Dean et al., 1995]) arise in constraint optimization and
soft constraint propagation. The main difference lies in the information available
during deliberation, and the extent to which the representation provides structure to
the meta-reasoner. Our approach does not exploit the structure of the COP as much as
is done in the planning domain.

To evaluate our approach, we focus on the problem of finding an assignment that
violates the fewest number of constraints, i.e., Max-CSP, when all constraints are
binary. However, our approach generalizes to any COP that can be expressed as a
Valued-CSP (VCSP), or equivalently, a Semiring-based CSP (SCSP) [Bistarelli et al.
1996]. The details of these representations are not important for the purposes of this
paper. However, we refer the reader to [Zheng and Horsch 2003] for details
concerning the COP solver used in this study.

1.1 Decision Theoretic Meta-reasoning

In problems like CSPs and COPs, there is always uncertainty in the solving process.
Horvitz [1988] summarizes the sources of uncertainty during computation: the value
of alternative computed results in a particular situation, the difficulty of generating
results from a problem instance, and the costs and availability of resources (such as
time) required for reasoning. Meta-reasoning refers to the deliberation concerning
possible changes to the computational state of an agent [Russell & Welfald 1991].
More concisely, it is the reasoning about computation.

The uncertain trade-off between the costs and benefits of a computation can be
modeled with decision theory. A decision theoretic meta-reasoner tries to determine
the object-level computation that maximizes the agent’s expected utility, considering
the trade-off explicitly. The comprehensive utility uc refers to the net value associated
with the commitment to a computation. Comprehensive utility can be decomposed
into two components: the object-level utility uo and the inference-related utility ui.
The object level utility uo of a strategy is the utility of the outcome, omitting the costs
associated with computation. The inference-related utility ui includes the costs that
are be involved in the computation, such as time cost, memory cost and network cost,
etc. The relation between these 3 utilities can be represented by: uc = fluo, ui). In
many cases, f can be treated as additively separable: fluo,ui) = g(uo) + h(ui) for
some functions g and 4. We assume that f'is separable in this way.

We make the further simplification of assuming that the on-line cost of meta-
reasoning is negligible, by designing our meta-reasoning to have negligible costs,
compared to the object-level algorithm. In our approach, there are non-negligible

A Decision Theoretic Meta-reasoner for Constraint Optimization 55

costs off-line in compilation and analysis, which we assume can be amortized over
the use of a meta-reasoning system, but we ensure that on-line costs are negligible.

A simple approach to meta-reasoning is due to [Russell & Wefald, 1991]. Suppose
the system maintains a “current best answer” a, which will be returned if it is
interrupted during inference. The work of the future computation is to refine a for a
higher utility. The algorithm is given as follows:

Step 1. Keep performing the object-level computation with highest expected net
value (uc), until none has positive expected net value.
Step 2. Return answer a that is preferred according to Step 1.

More assumptions can be made to simplify the estimated computations [Russell &
Wefald, 1991]. Meta-greedy algorithms consider only single computational steps,
estimate their ultimate effect, and then choose the step that appears to have the highest
benefit. The single-step assumption assumes the value of a partial computation as a
complete computation, as if the system only had time for one more complete
computation step. This assumption can cause underestimation of the value of some
computations. The expensive alternative is to search for an optimal sequence of steps.

2 A Meta-reasoning COP Solver

The task of computing the expected utility uc for each action is hard because of the
uncertainty in the results of computation. A meta-reasoning agent should select its
current best action by making explicit numerical estimates of the utilities of action
outcomes. Statistical knowledge of the probability distributions over the results of
computation can be used for future utility estimates of actions. Thus, our meta-
reasoning system consists of

e branch-and-bound search combined with consistency propagation in VCSPs
e a statistical model for the outcome of a computational step
e auser preference model of the costs of computation, and the value of a solution

2.1 The Branch-and-Bound Search Method

Recent research has been devoted to building COP frameworks extended from
constraint satisfaction problem (CSP) frameworks, including valued-CSPs (VCSPs)
[Schiex et al. 1995] and Semiring-based CSPs (SCSPs) [Bistarelli et al. 1996]. Early
approaches to COP solving use partial consistency propagation, combined with
branch and bound search, such as Russian Doll Search [Verfaillie et al. 1996] and
partial consistency propagation [Schiex et al. 1995]. More recently, Schiex [2000]
proposed a definition of node and arc consistency in a VCSP framework.

The constraint propagation we use is based on Larrosa’s variation [2002] of
Schiex’s approach, as implemented in [Zheng and Horsch 2003]. It consists of the
systematic repetition of projections of constraint costs from the (binary) constraints in
C to unary constraints over variables involved in the constraint, and then to a special
0-ary constraint for the entire COP instance. This method achieves node and arc
consistency in a VCSP framework, and can also prune the inconsistent values from
variables” domains. The 0-ary constraint gathers the projected costs from the binary

56 J. Zheng and M.C. Horsch

constraints and the unary constraints, and becomes a good lower bound (/b) for use in
branch-and-bound search. The upper bound in the search is the valuation of the
current best solution. Furthermore, the unary constraints on each variable provide a
value-ordering heuristic, which has been shown to be effective [Zheng & Horsch
2003]. This combination of soft arc consistency, with branch-and-bound search, using
the value ordering heuristic (BB-SRFL-H) is the object-level solver.

The solving algorithm is parameterized by a time bound that acts as a hard
deadline: once the time bound is reached, the solving will stop, reporting the current
best solution. The solving algorithm can also be interrupted by the meta-reasoner,
which can halt the solver, and report the current best solution, even if the total time is
not reached. The solver reports data to the meta-reasoner at regular intervals, as well
as when the current best solution is updated. This data is outlined below.

2.2 The Meta-reasoning Problem

The objective of meta-reasoning, as mentioned above, is to maximize the expected
comprehensive utility uc, which is a combination of object-level utility uo and
inference related utility ui. In this system, the object-level utility uo is defined as the
value of the solution quality, and the inference-related utility ui is the cost of
achieving uo, mainly the required time. With the assumption that these two utilities
can be separated additively, the relation is simply uc = g(uo) + h(ui). This equation
can be expressed in terms of cost. Suppose cc, co and ci are respectively the cost for
uc, uo and ui (cc = -uc, co = -uo and ci = -ui). The objective of maximizing uc is the
objective of minimizing cc.

20

Solution Cost
Comprehensive Cost ——
Time delay model: y=(1/30000)*x — — —

10 100 1000 10000 100000 1e+06
time delay (ms)

Fig. 1. An example graph of the combined cost cc from solution cost co and time cost ci. The
optimal cc occurs just before the 10 second point

To compute cc, we have to choose functions g and . Here we use “dollar ($)”
units to describe the costs, just for convenience. For the object-level cost co, (the
solution cost), we suppose the violation of any constraint costs $1. The cost function
for ci will depend on the user. For example, every 30 seconds of time delay costs the

A Decision Theoretic Meta-reasoner for Constraint Optimization 57

user $1. These are arbitrary choices that do not affect the design of the meta-reasoner,
and a later section will give a detailed discussion on user preference models.

The task for the meta-reasoner is to analyze data at short intervals, to predict or
observe the point when the minimal cc (maximal uc) is achieved, at which point it
should make the decision to halt computation. Figure 1 shows the graph of cc based
on a solved problem. Initially, the solution improves quickly and the increase of the
time cost was insignificant, so the combined cost cc decreases with the update of
solutions. As time goes on, cc will increase if there is no update. But a new update
would still reduce cc. The figure shows the ideal stopping point at the place of the
minimal cc: the point after an update and before a long “no-update” period was about
to start. This long interval would accumulate a high time cost, and even a new update
to the solution does not pay off.

This ideal analysis was obtained in retrospect using a solved problem. However,
for most problems, the solver cannot be certain if there will be another quick update
after the update that it just found. The task of our meta-reasoner is to predict the stop
point that achieves the expected maximal comprehensive utility uc. The meta-greedy
assumption is used to simplify the situation: the system will consider only one step at
every meta-reasoning point. Thus, our system takes the estimation of maximizing the
next step’s utility instead of directly maximizing the final decision’s utility. At every
short interval, say 1 second, the solver will pause and the meta-reasoner will consider,
as we outline below, whether or not to let the object level solver continue.

Solution, Cost
A

ub0

ubl'

1 1
H . i 5
0 =
' Time
x' secs
X secs

Fig. 2. A visualization for the notation that will be used throughout the method

The following notation is used to derive the meta-reasoning process:

e s50: the previous state at which the solution was updated most recently;

e ub0: the cost of the best solution (upper bound) at s0;

e s/: the current meta-reasoning state; we assume that there is no update from sO
(from the definition of s0), and the solution cost for s/ is still ub0.

e x: the number of meta-reasoning decision intervals passed from s0 to s/. If meta-
reasoning is performed every second, the time between s0 and s/ is x seconds.

e s]’: the state that the meta-reasoner predicts to have the next update after s/.

58 J. Zheng and M.C. Horsch

ubl’: the next update of solution cost, or the solution cost at s/”;

x’: the time from the current meta-reasoning state sl to the next update state s/’
Uc: the utility function for uc

Uo: the utility function for uo

Ui: the utility function for ui

With the knowledge of how much the update will cost the user (from ub0 to the
predicted ubl’), the task for the meta-reasoner is to decide whether to continue from
sl to s1’, based on the knowledge that it already has, and its prediction of how long s/
to s1” will take, and whether it will be less than the cost the user is willing to accept.

The meta-reasoner will say “continue” if it believes in an increase of uc, and on the
contrary “halt”. The change of uc brought by the action of “continue” can be
expressed in Equation 2 (from s0 to s1°).

Uc(continue) =Ux(s1') (D
Uc(halt) =Ux(s0)
AUz (continue) =Uc(s1") —U:(s0)

Since state s/’ is unknown, its real utility is uncertain, which we will model in
Equation 3 by the expected utility EUc(s1’).

AEU:(continue) = EUA(s1")—U:(s0) (2
With the knowledge of state s/, we can rewrite this as follows:
AEU:(continue) = (EU(s1")—Uz(s1)) +(U:(s1) —U:(s0)) 3)

Equation 4 estimates the utility change in two periods: from 50 to s/ and from s/ to
s1’. Using the additive separation assumption, Uc can be replaced by Uo and Ui.
Since there is no update from sO to s, the change of object-level utility
Us(s1)—U,(s0) is O; the change of the inference-related utility is the function of the

time spent for this period (x seconds as known), which can be expressed as Ui(x).

From s/ to sI’, the computation is based on prediction. The expected solution cost is
ubl’ as mentioned, and the expected time from s/ to s/’ is x’. Thus the change of
utility can be expressed as EUo(lubl'—ub0 1)+ EUi(x").

AEU:(continue) = EU(| ubl —ub0')+ EUI(x') +0+Ui(x) @)
Equation 5 can be expressed using probabilities and utilities:
AEU-(continue) =) P(ubl) XUn(| ubl'=ubO1)+ " P(x')XUi(x')+Ui(x) o)
ubl' x'

Equation 6 is the equation used in the meta-reasoner. If the estimated expected change
in computing one more step is positive, solving will continue. We assume that the
user preference model for costs due to time produces a single, global optimal uc.
Otherwise, the meta-reasoner may halt the system when it detects a local maximum.
Notice that ui only included the cost of solving; recall we require that the meta-
reasoning costs be negligible. If the probabilities P(ub’) and P(x’), and the utilities Uo

A Decision Theoretic Meta-reasoner for Constraint Optimization 59

are available cheaply during on-line computation, the meta-reasoning costs will be
negligible. The probabilities will come from a simple statistical model (Section 2.3),
and the utility functions will be based on different user models (Section 2.4).

\ aveBKDepth

Fig. 3. The statistical model for predicting ub0’ and x’

2.3 A Statistical Model for Predicting Outcomes of Computation

To obtain probabilities for ub!’ and x’ in Equation 6, we used a simple model based
on a naive Bayes classifier, extending it to 3 layers. The variables ubl’ and x’ are
considered the classifications, and we used the following features which are easily
available during the runtime of the solving mechanism:

. ub0 : the cost of the current best solution.

. nds : the number of nodes in the search tree visited since last solution update.

. bproj : the number of binary projections from last solution update.

. binccs : the number of binary constraint checks since last solution update.

. uproj : the number of unary projections since last solution update.

. unaccs : the number of unary constraint checks since last solution update.

. ccs : the number of checks since last solution update. This is a second level
feature, which is the sum of features 3 to 6.

8. numBks : the number of backtracks since last solution update.

9. aveBKDepth : the average depth of search.

10.frontierSize : the length of the current unvisited node list for the search.

NN R W=

According to the naive Bayes model, the features are assumed to be conditionally
independent given the classifications. Our modified model puts ub0, the value of the
current best assignment, as a parent to the classifications, acting as a kind of switch.
For example, if the input of current solution cost ub0 equals to 5, the probability of
nextub being larger than 5 will be 0, because they can only be better than the current
best solution. The model is shown in Figure 3.

To generate the training data, we solved randomly generated training problem
instances using the same object level algorithm (BB-SRFL-H), reporting data at every

60 J. Zheng and M.C. Horsch

point where an obvious change is observed. We tried three different strategies for
reporting runtime data. One alternative was to report at the point where a search node
was visited; the second reported data when a backtrack occurred. Experiments
showed that both of these two options produced too trivial information and very large
data files, so we used a third option: whenever the solving algorithm found a solution
which was better than the current best one, it reported the new solution cost, the time
spent, the number of nodes, checks and all the input features mentioned in above.

The data are distributed over a wide range, and therefore were “discretized” into
abstract states by visual inspection of the distribution of the data for each variable.
This has two consequences. First, the summations in Equation 6 are feasible with
discretized values, and second, the computed change in expected value is an
approximation of the actual change.

The statistical model was constructed using the maximum a posterior hypothesis
(MAP) learning rule, as is common in naive Bayes models. Problem sets of 2, 5, 10,
20, 50, 100, 200, 400 and 800 COPs were used to generate training data and smaller
numbers of testing data were used to test the models. Five statistical models were
constructed from training data collected by solving COP instances. The average error
rate for each set of 5 models was measured by counting correct predictions of ub’ on a
test set, as well as by computing the predicted error in the expectation of ub’ for the
test set. The error rates converged for trials greater than 200 COP instances.
Specifically, the average prediction accuracy for the 200 instance models was 72%
(standard deviation: 0.02), and the relative accuracy in the predicted ubl’ for these
models was 86% (st. dev. 0.004). Therefore, we used one of the five models
constructed using 200 COP instances as the model to be used in our system.

2.4 User Preference Models

We have assumed that time is the main resource cost in this system. Future work can
include other costs such as the memory cost. Focusing on the time cost, we introduce
different user preference models in this section. Several classes of utility functions of
ui (time) have been examined, including urgency, deadline, and urgent-deadline
situations [Horvitz 1988]. Section 2.2 demonstrated meta-reasoning with a simple
time model wherein 30 seconds costs $1. However, different users may have different
requirements about urgency and deadlines. To measure how the time delay affects the
solving and the decisions, utility functions are associated with time delay.

We focus on urgency models, rather than deadlines. Where there are pure
deadlines, the utility function Ui has two stages: before the deadline, Ui=0, and after
the deadline Ui=-o0. Thus, meta-reasoning is not even useful for pure deadlines.

An urgency model is a general class of utility functions in which the cost increases
monotonically as the time delay increases. We focus on the urgency model to convert
time to utilities for the computation of expected value (see Equation 6). If the system
is trapped in a long proof without any solution improvement, the cost will increase
significantly. Our urgency models are linear with time as examples only; our
approach is not limited to linear models.

A Decision Theoretic Meta-reasoner for Constraint Optimization 61

3 Experimental Results

This section reports on the experiments of testing our solver for several different user
models. The performance of our meta-reasoner solver is compared with the results
from the original non-meta-reasoning solver.

For complete generality, a meta-reasoning system would be able to solve many
different kinds of COP instances. However, in this system we focus on a very
specific class of COP instance: randomly generated Max-CSPs with 17 variables, 8
values, a constraint density of 0.5, and an average constraint tightness of 0.5. Our
implementation is limited to problems from this class, but our design can be extended
to any class; we are pursuing the open research issue of developing an approach that
can be used for many classes of COP problems. Our experiments use very small COP
instances, because of the need to solve them completely to analyze the results. The
details of our experimentation follow.

3.1 Testing the Meta-reasoning Solver

We tested the meta-reasoner on 50 random problems from the same class as above,
using the user model from Section 2.3: each 30 seconds delay costs the user $1.
Figures 4, 5 and 6 are the graphs showing the comparison between using the meta-
reasoning solver and the same solver without the meta-reasoning. The graphs show
the result for each of the problems in terms of the solution costs and the time spent.

meta-Solving ——
pon-meta-Solving

Solution Cost

0 5 10 15 20 25 30 35 40 45 50
Problem Instances

Fig. 4. Comparison on solution costs on 50 COPs. The average difference is 1.84 and the
standard deviation is 1.40, in favour of the non-metareasoning solving

In Figure 4, the x-axis shows the independent problem instances and the y-axis
shows the solution costs from the two solvers. The solution cost for non-meta-solving
is the cost of the solution at the end of the complete solving, and the solution cost for
meta-solving is the cost of the current best solution at the point where the solver
decided to stop. From Figure 4, we can see that using the meta-solver results in
solutions that are about 2 constraint violations worse on average.

62 J. Zheng and M.C. Horsch

350000 T —
meta-Solving —&—

non-meta-Sohing T—Oﬁ

300000
250000 -
200000

150000

Time Delay (ms)

100000

50000 [

Problem Instances

Fig. 5. Comparison on used time, on 50 problem instances as above. The average time
difference is 53 seconds and the standard deviation is 55 seconds

Figure 5 shows the comparison of the run time of the two methods. Here, the y-
axis shows the amount of time used. The meta-solver almost always stops before the
non-meta-solver does, and on average, about 53 seconds sooner. In a few cases, the
two solvers require nearly exactly the same time.

Saved Money by meta-Solving against non-meta-Solving —<—

Money ($)

0 5 10 15 20 25 30 35 40 45 50
Problem Instances

Fig. 6. Difference in comprehensive utility between the two solvers. The average difference in
“dollars” is -0.05 and the standard deviation is 2.17, in favour of the non-metareasoning solver

Figure 6 compares the comprehensive utility of the two solvers, using $1 per
violation, and $1 per 30 seconds. The average uc is —$0.05, which is close to zero as
one would expect, given that two violations equals one minute’s computation.

3.2 Testing Different User Preference Models

To see how our meta-reasoning solver provides different results for different user
models, 7 user models were tested with 50 COPs. These 7 models were just examples

A Decision Theoretic Meta-reasoner for Constraint Optimization 63

that show the time cost from expensive to cheap: M1 (1s = $1), M2 (5s = $1), M3
(10s = $1), M4 (20s = $1), M5 (30s = $1), M6 (60s = $1), and M7 (120s = $1).

70

Average ‘Saved Money on Different Models —o—
y=0 —

60 [

50

40

30 -

20

10 -

Saved Money Compared to non-Meta ($)

-10

7 Models, Expensive to Cheap

Fig. 7. Average difference in comprehensive utility using the metareasoning solving on 7 user
preference models

Figure 7 shows the average of the saving on these 7 models. The x-axis is the 7
models, from expensive to cheap, and the y-axis is the average saving for these 50
COP instances using these 7 models. This figure shows that our meta-reasoner pays
off when time is expensive, but is comparable to the complete solver if time is cheap.

4 Summary and Future Work

We designed and implemented a decision theoretic meta-reasoning COP. The system
is able to make run-time trade-offs based on a model of expected comprehensive
utility. A traditional machine learning method was used to build a model of the way a
COP solver improves solutions. Different user models were used to test the system’s
adaptability and its advantages or disadvantages according to different time urgency.
Experiments suggest that this system is useful on expensive time models, but on
average did not perform badly in cases when time was cheap.

Currently the meta-reasoner only provides the solver with the decision to halt or to
continue, providing no other help during the solving. We are developing a meta-
reasoner to predict the next ub value. This could be used as an expected upper bound,
which could be used to limit search. This is similar to the binary choice meta-reasoner
of Carlsson et al [1996]; however, we expect the ub from the meta-reasoner will be
more accurate than the binary choice algorithm, and thus we should have fewer wrong
predictions and fewer backtracks.

The design of the system is not limited to any specific variety of VCSP. However,
the implementation that was tested is specific to a class of very small VCSP. This

64 J. Zheng and M.C. Horsch

limitation was imposed by the need to test the solver on problems for which the best
objective solution (ignoring computational costs) is feasible to compute. We are
currently working on testing the design on larger problems. To extend the approach
to a wider class of problem, the features used to estimate expectations and
probabilities need to be made independent of the problem class. We do not claim that
the features presented in our model are optimal in any sense. A different set of
relationships or features may improve the accuracy of the predictions.

The Bayesian model was designed so that inference in the model would be easy,
but because it is based on the “naive Bayes” assumption, the manual construction of
the network leaves significant space for improvement. Learning a model structure
from the data may improve the predictive power of the meta-reasoner, but the choice
of model has to take on-line meta-reasoning costs into account.

Acknowledgements

The second author acknowledges support by NSERC through RGPIN2387870-01.

References

Boddy, M. and Dean, T. 1994. Decision-Theoretic Deliberation Scheduling for Problem
Solving in Time-Constrained Environments. Artificial Intelligence, Volume 67, Number 2,
pp 245-286, 1994.

Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex, T.; and Verfaille, G. 1996.
Semiring-based CSPs and valued CSPs: Basic properties. In M. Jampel, E. C. Freuder, and
M. Mabher, editors, Over-Constrained Systems, Volume 1106 of Lecture Notes in Computer
Science, pp111-150. Springer, Berlin, 1996.

Carlsson, M.; Ottosson, G. 1996. Anytime Frequency Allocation with Soft Constraints. CP96
Pre-Conference Workshop on Applications. 1996

Dean, T.; Kaelbling, L.; Kirman, J.; Nicholson, A. 1995. Planning Under Time Constraints in
Stochastic Domains. Artificial Intelligence, Volume 76, Number 1-2, Pages 35-74, 1995.

Horvitz, E. J. 1988. Reasoning under Varying and Uncertain Resource Constraints. In
Proceedings of the National Conference on AI (AAAI-88), pp 111-116. 1988.

Horvitz, E. J. 1989. Reasoning about Beliefs and Actions under Computational Resource
Constraints. In Uncertainty in Artificial Intelligence 3. Elsevier Science Publishers, 1989.
Horvitz, E. J.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B. and Chickering, D. M. 2001. A

Bayesian Approach to Tackling Hard Computational Problems. Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, pp235-244, 2001.

Larrosa, J. 2002. Node and Arc Consistency in Weighted CSP. In Proceedings of the 18"
National Conference on Artificial Intelligence (AAAI-2002), pp48-53 2002 .

Russell, S.; Wefald, E. 1991. The principles of meta-reasoning. 1st International Conference
on Knowledge Representation and Reasoning, pp406-411. Morgan Kaufmann. 1991

Schiex, T. 2000. Arc consistency for soft constraints. In CP-2000, pp411-424, 2000.

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc. of the 14th International Joint Conference on Artificial
Intelligence (IICAI-95), pp 631--637. 1995.

A Decision Theoretic Meta-reasoner for Constraint Optimization 65

Verfaillie, G.; Lemditre, M.; and Schiex, T. 1996. Russian doll search. In AAAI-96, pp181—
187, 1996.

Zheng, J. and Horsch, M. C. 2003. A Comparison of Consistency Propagation Algorithms in
Constraint Optimization. In Proceedings of the Sixteenth Canadian Conference on
Artificial Intelligence, pp160-174, 2003.

Heuristic Search Applied to Abstract Combat Games

Alexander Kovarsky! and Michael Buro?

University of Alberta, Edmonton, Alberta, Canada
{kovarsky1 , mburoQ}@cs .ualberta.ca

Abstract. Creating strong Al forces in military war simulations or RTS video
games poses many challenges including partially observable states, a possibly
large number of agents and actions, and simultaneous concurrent move execu-
tion. In this paper we consider a tactical sub—problem that needs to be addressed
on the way to strong computer generated forces: abstract combat games in which
a small number of inhomogeneous units battle with each other in simultaneous
move rounds until all members of one group are eliminated. We present and test
several adversarial heuristic search algorithms that are able to compute reasonable
actions in those scenarios using short time controls. Tournament results indicate
that a new algorithm for simultaneous move games which we call “randomized
alpha—beta search” (RAB) can be used effectively in the abstract combat applica-
tion we consider. In this application it outperforms the other algorithms we im-
plemented. We also show that RAB’s performance is correlated with the degree
of simultaneous move interdependence present in the game.

1 Introduction

Abstract combat games — also known as combat attrition scenarios in military lit-
erature — have long been a focus of military research [5]. In the area of computer
generated forces these models can be used to predict the outcome of simulated battles
and to compute actions that would for instance maximize the inflicted damage or unit
survival probability. In order to simplify the problem, states are usually abstracted. For
instance, terrain is often represented as collection of convex cells — typically squares
or hexagons — and objects as vectors that describe attack values, health or so—called
hit—points, position, size, maximum and current speed, heading, and sight-range, etc.
The purpose of this research is to design and study fast heuristic decision proce-
dures for abstract combat games that belong to the class of two—player simultaneous
move games with otherwise perfect information. Such algorithms have applications in
popular real-time strategy (RTS) video games — such as Warcraft (http://www.
blizzard.com) — which essentially are real-time battle simulations. For instance,
incorporating abstract combat algorithms in graphical user interfaces relieves human
players from laborious unit micro—-management and lets them focus on more strategic
decisions. In extreme cases where hundreds of fighting units have to be managed or
several separate battles are fought, issuing fire commands to units manually in timely
fashion may not even be possible. When delegating local fights to Al modules the tacti-
cal performance could even improve because programs may select targets and concen-
trate fire faster and more accurate than any human. Increasing the playing strength of

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 6678, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Heuristic Search Applied to Abstract Combat Games 67

allied or opponent computer players in RTS games to make game playing more chal-
lenging is another immediate application from which military combat simulators can
benefit, too.

The central idea of this research is to go beyond established analytical methods —
that model warfare globally with differential equations [11] — by studying adversarial
heuristic search techniques in this domain. In general terms, such algorithms conduct
look—ahead searches in (abstract) two—player state spaces by repeatedly generating suc-
cessor states, deciding where to proceed, evaluating states, and propagating those values
in the constructed search graph. Minimax—search and its enhancements, for example,
fall into this category. Often, deep search can compensate for less than perfect domain
knowledge. A good example is chess, where PC programs now have reached World-
champion-level performance by combining deep search with relatively simple (fast)
evaluation functions. Using the chess example again, it is a non—trivial task to write
an evaluation function that can statically detect and assess capture sequences. On the
other hand, look—ahead search that makes use of simple material features can find and
evaluate capture sequences quickly. Here, too, the hope is that look—ahead search can
overcome the need for accurate evaluation models — which in general are hard to find
— and that search even under real-time constraints produces high—quality actions.

Video games have been the focus of several Al research projects in recent years.
E.g. in [4] evolutionary algorithms are used to enable Al characters to develop novel
behaviours in an RTS-like combat situations. In [8] complex artificial characters for a
custom designed adventure game are developed based on the Unreal Tournament game
engine and the SOAR Al architecture. Stochastic search has been studied in this area,
too (e.g. [9]). However, to our knowledge, no previous research has applied randomized
heuristic search to two player games with simultaneous moves.

The remainder of the paper is organized as follows: first we define the class of com-
bat games we consider. Next, a number of search algorithms are presented for these
games ranging from an optimal solution based on solving linear programs to a Monte
Carlo algorithm. We then describe a new algorithm for simultaneous move games. Fi-
nally, we present and discuss experimental results and conclude the paper with sugges-
tions for future research.

2 Abstract Combat Games

In abstract combat games two players are in control of teams of units which attack
each other in simultaneous move rounds. In each turn, both players give orders to their
units which then are executed simultaneously. Games start with two groups of units and
end after a sequence of rounds when one group is eliminated. We make the following
simplifying assumptions:

— there are no hidden state variables
— all units have the ability to attack any opponent unit at any time

— units are static objects, they cannot move

68 A. Kovarsky and M. Buro

a) Unit 1 Unit 2 Unit1 Unit2 b) Unit 1 Unit 2 Unit1 Unit2

Team |ppa=d h=3a=l [T Inola=2 dead | |Te4M |h2a=2 (h=3a=1) | T4 |h=2a=d h=la=1
s L

Team | 332" heta=1 | | TS4" | dead h=la=1| | TO4M | h=34=3 Team | p-1a=3 h=1a=1

Fig. 1. State transitions in abstract combat games. Arrows indicate attacks, boxes indicate de-
fensive stance. a) non—defensive scenario. b) defensive scenario. When a unit defends, its attack
value is temporarily added to its hitpoints. This decreases the damage the unit receives in case it
is attacked. If a defending unit is not attacked, its hitpoint value remains unchanged

In the games we consider here units have the following numerical properties:

h : Hitpoints — the defensive strength of a given unit
a : Attack value (const.) — the amount of damage a unit can inflict
¢ : Cool-down period (const.) — how long to wait before next attack

Each unit has one weapon with a specific attack value and cool-down period. If the
weapon has cooled down, i.e. the weapon was last fired at least ¢ + 1 rounds ago, it
can fire again. Before attacking, units have to select their target. In the next turn they
can shoot only at that target. If a unit wants to attack another target it needs to aim.
Aiming costs one time step. When a unit gets attacked its hitpoint value is decreased
by the attackers attack value. If a unit’s hitpoint value drops below 1, it is considered
destroyed and removed from the game. A typical state transition is shown in Fig. 1a).

In the basic set—up despite actions being executed simultaneously we theorize that
the success of a player’s action does not strongly depend on what the opponent chooses
to do. Le., announcing a move hardly hurts. This is because damage is inflicted regard-
less. To study the performance of the heuristic search algorithms we implemented in
more Rock—Paper—Scissor—like scenarios, where announcing moves is foolish, we add
a defensive action and call games with this additional move option “defensive”. The
defensive action enables the unit to use its attack value for defending rather than for
attacking. Specifically, if a unit decides to defend instead of attacking, a certain pro-
portion (possibly > 1) of its attack value is temporarily added to its hitpoints. When
this unit is attacked the attacker will only cause damage to the unit if its attack value is
bigger than the unit’s proportion of attack value used for defence. If a defending unit is
not attacked its hitpoints remain unchanged (i.e. not increased). In addition, a defending
unit can also cause damage to the attacker. There is a certain benefit to take a defensive
stance. But there is also a degree of risk because a unit taking a defensive action might
not be attacked and is therefore risking to waste its turn. A defensive game scenario is
shown in Fig. 1b).

3 Heuristic Search in Abstract Combat Games

The major challenges in the abstract combat games we just described are large branch-
ing factors, limited decision time, and simultaneous move execution. In the simplest
case — simultaneous move zero—sum — games consist of one start state and n X m
successor states which are reached after executing single simultaneous action pairs.

Heuristic Search Applied to Abstract Combat Games 69

Here, player A has n actions to choose from and player B has m. The values of the
terminal states are given in form of a n X m payoff matrix. Optimal (mixed) strategies
for these games always exist [12] and can be computed by solving a pair of associated
linear programs. Abstract combat games can be viewed as multi—step matrix games and
as such can be solved by dynamic programming [3]. Unfortunately, this technique has
no practical relevance because state spaces — even for small scenarios — are huge.

An alternative approach is to trade solution quality for speed by considering heuris-
tic search algorithms. In the remainder of this section we first present the evaluation
function used in all heuristic algorithms we implemented. Then we will describe all
algorithms in turn.

Evaluation Functions for Abstract Combat Games. The heuristic algorithms we
describe below rely on an evaluation function that measures the goodness of a state
in view of player 1 or 2. The following function estimates the differential of the total
lifetime damage two groups of units can inflict:

ny hgl) % agl) no h7(2) « a£2)

D

i=1 Cl('l) +1 i=1 01(2) +1

ey

where unit attribute superscripts indicate the unit owner and nq, no denote the number
of units for player 1 and 2, respectively. Here, hitpoints are used as estimator of the life
expectancy of a unit, while attack value over cool-down plus 1 represents the average
damage a unit will deal during one time step. Evaluation function (1) is monotone in
the h and a values, takes cool-down into account, and can be computed quickly. We
used it for a while in our experiments before a serious weakness became apparent: its
inability to differentiate between hitpoint distributions. In general, it is more beneficial
for a player to have units with a uniform hitpoint distribution than having some units
with low hitpoint values and others with high hitpoint values. This is because units with
low hitpoints values are much closer to elimination. For a fixed average attack value,
evaluation function (1) only considers the sum of hitpoints. Thus, values for widely
varying hitpoint distributions — everything else being equal — could be the same. The
following function fixes this problem at the expense of introducing non-linearity and
departing from modeling the lifetime damage:

(2)
>)

[z
E
E
|
NgE
D‘
w

(2)
i

) 2
-1 ¢+l ¢
By applying the square root to hitpoints the evaluation function implicitly prefers more
uniform hitpoint distributions. Function (2) was used in the experiments reported in
section 5 after initial tournaments indicated that it performs better than function (1). We
have not tried to optimize the evaluation function further — for instance by introducing

parameters and optimizing them, because the focus of this work is search rather than
evaluation function construction, which is a research topic by itself.

Linear Programming (LP). We have seen that solving abstract combat games by
means of dynamic programming and linear programs is impractical. One idea to com-
pute approximate move distributions in this setting is to stop at a certain search depth

70 A. Kovarsky and M. Buro

and to apply a heuristic evaluation function to the end states reached at that depth. Our
LP player searches at depth 1. Le. it generates all moves for both players, considers all
possible move pairs, evaluates the reached states using the evaluation function (2), cre-
ates a payoff matrix from these values, and solves the linear program associated with
the player to move (see e.g. [3]). It then draws a move with respect to the computed
optimal move distribution. We limit the search depth to one because depth 2 compu-
tations take too much time in our RTS game setting. This figure may change in future
experiments when using better linear program solvers or faster hardware.

Alpha-Beta Search (AB). Minimax search and its enhancements have been proven
effective in perfect information games where two players alternate turns under moder-
ate real-time constraints (e.g. chess). The minimax search procedure traverses a search
DAG in depth—first order until a certain depth is reached. It then evaluates the result-
ing position and propagates values to the parent node according to the minimax rule,
i.e. maximizing scores in MAX nodes and minimizing scores in MIN nodes. The search
continues until the value of the root node has been established, in which case the move
leading to the best result is chosen. Alpha—beta pruning [7] is an enhancement of the the
minimax algorithm which can reduce the search time exponentially in the depth while
still computing the correct minimax values and moves. It is therefore tempting to apply
alpha—beta search to abstract combat games, even though the algorithm originally was
designed for alternating move games. The way we approximate simultaneous moves
is by postponing the execution of the first player’s action until the second player has
chosen a move. This implicitly gives away the first player’s choice, but there is hope
that this approximation can still lead to strong performance because of deeper searches
compares with other methods. There are many ways to improve the performance of
alpha—beta search. For this application we implemented iterative deepening and sorting
moves based on their 1-ply evaluations.

Monte Carlo Sampling (MC). Monte Carlo methods solve problems by executing a
large number of possibly biased random actions and examining the numerical results
such actions generate. The method is used for finding solutions to problems that are too
complex to solve analytically. In game Al research, Monte Carlo approaches have been
successfully applied to Bridge and recently to the game of Go [2]. In our approach we
play out a game until one player is eliminated. For each of the main player’s (i.e. the
player who performs the simulation) moves at the root, a series of simulations is per-
formed given the available resources. After the runs, the average scores and standard
deviations for each move at the top are computed. The move with the “best” average
score and standard deviation combination is selected by the player to be executed. Score
calculation details are presented in Section 5. In each turn the MC player randomly se-
lects one of the the available actions and then executes it. The run continues in this
fashion with both players executing their randomly selected moves, until one of the
players is eliminated. A score is calculated for the position, propagated to the top node,
and then recorded as one of the values for the selected move.

Move Selection. One way to combat large branching factors in search is to forward—
prune subtrees. In some games (e.g. backgammon [6]), limited—depth searches can pro-
duce a subsets of moves that likely contain the best moves available. We use move

Heuristic Search Applied to Abstract Combat Games 71

selection for all our search-based methods (i.e. AB, MC, and RAB (described in the
next section). Before the start of each of the proposed methods at each level in the
tree we perform a complete depth one search for each of the successors. After that, the
top N successors are sorted in decreasing order of their scores. Then the search will
concentrate only on those top N successors. Because of the decreased branching factor
the search can go much deeper. For such a move sorting scheme to be successful, it is
important to have an accurate state evaluation function.

Delayed Move Execution. Delayed move execution is required when using algorithms
for alternating move games, such as alpha—beta, in simultaneous move games. In alter-
nating move games, the first player will change the game state by executing a move.
After that the second player will change the state by executing his move. Such a se-
quence of events does not represent the situation accurately, because the state of the
game should have remained the same when the second player decides on its move.
Therefore, in our search algorithms we delay move executions until both players have
committed to an action.

4 Randomized Alpha-Beta Search (RAB)

Our goal when designing the RAB algorithm was to overcome the major disadvan-
tage of the basic alpha-beta algorithm of not addressing possible move dependencies
in simultaneous move games. Alpha—beta is a search algorithm for alternating move
perfect information games in which all actions are observable. Therefore, players have
the advantage of seeing the previous opponent action, which when alpha—beta search
is applied to simultaneous move games results in over— or underestimating the value of
positions. To soften the effect of advance knowledge of opponent’s moves we propose
an algorithm based on alpha—beta search which randomizes the color to move in certain
nodes. Thus, in some nodes in the tree player one will have the advantage of knowing
player two’s move, while in other nodes the situation will be reversed.

The algorithm is quite simple: at even depths the color to move is randomized and
at odd depths the color to move is changed. The only exception occurs at the root of
the tree where the first move always belongs to the player performing the search and its
moves are always followed by opponent moves. A sample RAB tree is shown in Fig. 2.

Our hope is that with RAB the advantage of the second player to move will be re-
duced, because in the whole search tree both players will have equal chances of knowing
the opponent’s moves. In RTS games, however, algorithms need to perform under tight

Fig.2. Sample RAB tree. .

toggle O

randomize

Black moves first at the root,
followed by White. At the
next level, the player to move

ol Wi eullne!
is randomly selected. This | tosgle ‘ ‘ O O ./ ‘ ‘ \.

player’s move is followed by a
O ‘White to move . Black to move
move of the opponent

72 A. Kovarsky and M. Buro

time constraints. RAB, as opposed to AB is non—deterministic, because every run of
the algorithm is likely to produce different results. Being a sampling—based approach,
it requires multiple runs to be performed for every move that is available to the player
executing the search at the root. For every such move, the best scores will be recorded
for every run. Then, for each move the average score and the standard deviation are cal-
culated. Multiple runs are required for drawing valid conclusions about the quality of
moves. The move that is chosen for execution is determined by taking into account the
average scores and standard deviations for each considered move. The move with the
best combination of average score and standard deviation is then executed. Section 5
gives details on score calculation. We think that the score average combined with the
standard deviation for each move simulates the effect of simultaneous move execution
better than a single regular alpha—beta run. However, the main concern with RAB is
the number of runs that it will require to find a good move. Also, if there is very little
advantage of knowing the opponent’s moves in a given game, it is possible that alpha—
beta search can find a good move or possibly the best move in just a single run. It is also
possible that it is more worthwhile to invest the extra resources into deeper searches
than on repeated searches. Fig. 3 shows pseudo—code of the RAB search algorithm.

// compute scores for all moves
void TopLevelRAB(State state, vector<double> &moveScores, int
depth) {
vector<Move> moves;
moveScores.clear () ;
GenerateMoves (state, moves) ;
for 1 = 1..moves.size() { // evaluate all generated moves once
newState = makeMove (state, moves[il]);
score = RAB(newState, -infinity, infinity, depth, 0);
moveScores.append (score) ;
}
}

// recursive randomized tree search; uses the negamax variant of alpha-beta
void RAB(State state, int alpha, int beta, int depth, int
randGenerate) {

if (terminalNode(state) || depth == 0) return evaluate(state);

if (randGenerate) toMove = random() & 1; // pick 0 or 1 randomly

else toMove = opponent (state); // toggle color to move

randGenerate = 1 - randGenerate; // toggle flag

if (parentPlayerToMove (state) == currentPlayerToMove (state)) {
alpha = -beta; beta = -alpha;

}

SetToMove (state, toMove) ;

maxScore = -infinity;
GenerateMoves (state, moves) ;
for i = 1..moves.size() {

newState = MakeMove (state, moves[i]);

// nega-scout alpha-beta variant

value = - RAB(newState, -beta, -alpha, depth-1, randGenerate) ;

if (value > maxSscore) maxSscore = value;

if (maxSscore > alpha) alpha = maxSscore;

if (maxSscore >= beta) break;
}
if (parentPlayerToMove (state) == currentPlayerToMove (state)) return -score;
else return score;

Fig. 3. RAB Pseudo—code

Heuristic Search Applied to Abstract Combat Games 73

RAB Implementation and Score Calculation Details. The RAB algorithm is imple-
mented using iterative deepening [10] which is often utilized in environments with
real-time constraints. It performs multiple searches starting with the lowest depth and
increases the search depth at every successive iteration. The rationale behind the tech-
nique is that lower depth searches take only a fraction of the time the next higher depth
search will take and thus not much time will be wasted. The main benefit is that at any
time a reasonable solution is available which makes the search algorithm fit for real—
time applications. At each search depth RAB needs to complete several iterations in
order to gather meaningful statistics. The higher the search depth the more iterations
RAB needs to complete at that depth, because the deeper the search the higher the
variability or standard deviation of the results.

S Experiments

A tournament environment was set up for performing the experiments and for gather-
ing statistics on the results. A tournament game is a match between two players who
battle with each other until one player is eliminated. At each state both players imple-
ment their respective algorithms to find their best move. Then both moves are executed
simultaneously, the state of the game is updated, and the game continues until one or
both players are eliminated (refer to Section 3 for an example). Given two players A
and B, a win for A(B) occurs when A(B) has unit(s) remaining while B(A) does not. A
draw occurs when both players have no units remaining. Each experiment consists of
200 games. To make the summary of experiments easier to understand and analyze, the
experimental results are presented in terms of the win ratio:

(#wins +0.5-#draws) / (#wins + #losses + #draws)

The number of wins, losses, draws, as well as the average scores achieved in each run is
recorded. To minimize the variance, symmetric starting positions are chosen. The units
in each team are generated randomly within predefined boundaries. There are three
types of units: tanks, marines, and artillery. Each type has the ranges of hitpoints, attack
values and cool-down periods as shown in Table 1.

The node count limits that are used in the experiments were selected in order to
produce acceptable real-time performance on the machines used for the experiments.
Specifically, the experiments are run on Athlon MP/XP 2400+ to 2500+ processors
with 512-1024 MBs of memory. For non—defensive experiments the node limit for
one move in a game for each player when set at 200k nodes results in average game
durations of ~4.5 seconds, consisting of ~5-6 moves for each player. For defensive
experiments, when the node limit is set at 300k nodes, each game lasts on average 9
seconds, consisting of ~6-7 moves for each player.

To calculate the score in both RAB and MC the setting of (average score — 1 X
standard deviation) is used. This setting was determined in a preliminary set of exper-
iments and will be used in all of our experiments. For all experiments the square root
evaluation function (2) is used as it performed best in a preliminary experiment. The
empirically values for N — the number of considered moves in the move selection
function — were determined in a series of experiments as well. We chose N = 10 for 3

74 A. Kovarsky and M. Buro

Attribute | Tank | Marine | Artillery
Table 1. Hitpoint, attack value, Hitpoints 60..90 | 30..40 20..30
and cool-down period ranges Attack value 30..45| 15.25 40..60
used in the experiments Cool-down period 1 0 2

))) Algorithm || Cumulative Win % | Cumulative Win %
Table 2. Cumulative win ratios non—defensive defensive
for each algorithm obtained by RAB 73% 75%
a round-robin tournament for AB 68% 68%
non—defensive and defensive 3 MC 64% 53%
vs. 3 scenarios LpP 43% 53%
RAND 2% 2%

Table 3. Round-robin tourna- Players“ RAB | AB MC LP | RAND
ment results. Reported are win "RAB — 152%,60%|56%,72%|84%,67%|99%,99%
percentages in view of the AB ||48%,40%| — |53%,67%|75%,66%|97%,99%
player named in the left-hand MC ||44%,28%|47%,33% — 64%,52% (99 %98 %
column for the non—defensive LP |[16%,33%|25%,34%|36%,48% — 96%,97 %

and defensive 3 vs. 3 scenarios RAND|| 1%,1% | 3%,1% | 1%.2% | 4%,3%

vs. 3 non—defensive and N = 20 for defensive scenarios. In 4 vs. 4 non—defensive and
defensive scenarios N is set to 40 and 60, respectively.

The two types of starting positions examined in all experiments are the 3 versus 3
units and 4 versus 4 units. In the 3 vs. 3 case teams consist of two marines and one tank.
In the 4 vs. 4 case, teams consist of one artillery unit, two marines, and one tank.

Performance of all Methods. The results of the 3 vs. 3 experiments shown in Table 2
and Table 3 suggest that the RAB and AB players are the best performers in two typical
scenarios, with MC coming third. The LP player’s performance is not very close to that
of the best methods, because of its limited search depth. In defensive scenarios LP’s
performance improves significantly, but still is not on par with that of either RAB or
AB. Therefore, the remaining experiments will concentrate only on RAB and AB.

Varying RAB Nodes vs. Constant AB. This experiment, shown in Fig. 4(A,B), is
designed to determine how providing RAB more resources changes its performance.
RAB is playing against the AB algorithm whose maximal node count is held constant,
while the number of nodes assigned to RAB is varied. For 3 vs. 3 defensive and non—
defensive scenarios AB is assigned 50k and 100k nodes, respectively. For both 4 vs. 4
defensive and non—defensive scenarios AB is assigned 200k. The general trend is that
as the number of RAB’s node budget increases, the quality of RAB’s moves increases.
The increase is more gradual in the case of defensive scenarios, as compared to the
non—defensive ones. In non—defensive scenarios there is less interdependence than in
the defensive scenarios, therefore reaching higher depths has more effect on the quality
of the resultant solution.

Strict Constraints Experiment. The results in Fig. 4(C,D) for both defensive and
non—defensive scenarios show that RAB performs better than AB across most of the

Heuristic Search Applied to Abstract Combat Games 75
settings. The most surprising finding is that given a very limited number of nodes for
both defensive and non—defensive scenarios RAB outperforms AB. This shows that
even though AB can reach greater depth than RAB given the same node limit, investing
into randomization and extra runs rather than into deeper searches pays off very early
for the RAB algorithm. Another general trend observed is the gradual reduction of
RAB’s improvement over AB. The results show that as the number of nodes increased
for both algorithms, RAB reaches a ceiling in its winning percentage over AB.

Degree of Move Interdependence. The independent variable in the experiment shown
in Fig. 4(E,F) is the degree of dependence of a given scenario. This variable can be eas-

A) Varying RAB’s Nodes vs Constant AB (Non-Defensive Scenarios) B) Varying RAB’s Nodes vs Constant AB (Defensive Scenarios)

Fig. 4. Tournament Results

0.7 T T T T T T 0.7 T T T T T T
RAB(over AB) 3 vs 3 wins ratio —+— RAB(over AB) 3 vs 3 wins ratio —+—
0.68 RAB(over AB) 4 vs 4 wing ratio_ - | 0.68 r RAB(over AB) 4 vs 4 wins ratio -~ "
0,66 [et 0.66
g £ 06
I 064 3 0.64
= w
5 062 & 062
8 0.6 8 0.6
g 058 g 08
£ 056 S 056 f i
z O R T R e
0.54 0,58 it
0.52 0.52
0.5 0.5
20k 50k 100k 200k 400k 600k 50k 100k 200k 400k 600k 800k
Number of Nodes Number of Nodes
C) Strict Constraints Experiment (Non-Defensive Scenarios) D) Strict Constraints Experiment (Defensive Scenarios)
0.8 T T T T T T 0.7 T T T T T T T T
RAB(over AB) 3 vs 3 win ratio —+— RAB(over AB) 3 vs. 3 win ratio ——
0.75 RAB(over AB) 4 vs 4 win ratio %] 0.65 RAB(over AB) 4 vs. 4 win ratio - |
o 0.7 05
,,,,,,,,,,,, =) .
< 0.65 <
i 2055 o
8 0.6 o 5 - e i
& 055 ° 0.5
b= T
g 05 £ 045
=
=045 S
z = 04
0.4
035 0.35
0.3 0.3
10k 20k 50k 100k 200k 400k 30k 50k 100k 200k 400k 600k 800k 1000k
Number of Nodes Number of Nodes
E) Dependence Experiment (3 vs. 3) F) Dependence Experiment (4 vs. 4)
0.8 T r - T 0.8 T T - -
Win Ratio (RAB over AB) —— Win Ratio (RAB over AB) ——
0.7 b (Wins+Losses)/Number of Games - 0.7 (Wins+Losses)/Number of Games -
m 0.6 m 06
Pl — 2
~ 05 - 05 Py
2 g
o 04 o 04
K] 3 o
&3 e B e
8 - g -
02) .
0.1 fomemrr T 0.1 :
No Defence Small Def. Medium Def. High Defence No Defence Small Def. Medium Def. High Defence
Number of Nodes Number of Nodes

: (AB), (C,D), (E.F)

76 A. Kovarsky and M. Buro

Sticking vs. Re-Aiming Experiment

08 stick‘ing VS. ‘re—aimi‘ng 3vs.3 ——

0.75 sticking vs. re-aiming 4 vs. 4 - Aemnee
0.7

0.65
0.6

0.5 o L e
0.5

0.45
0.4

0.35
0.3

‘Win Ratio for RAB when sticking to target

10k 50k 100k 200k 400k 600k 800k
Number of Nodes

Fig. 5. Sticking to target vs. re—aiming results

ily adjusted in our domain starting with a setting with no defensive actions, and finishing
with the setting where there is a very high potential reward for selecting defensive ac-
tions. Specifically, in a scenario with no reward for the defensive actions units are not
motivated to execute such actions since the defensive actions do not benefit them. The
exact settings for labels in Fig. 4(E,F) are as follows: “no defence”: no defensive action
used; “small defence”: 0.5 x attack value is used for defence and 0.1 to hit back at the
attacker; “medium Defence: 1.0 x attack value for defence and 0.2 to hit back at the at-
tacker; “high Defence”: 1.3 x attack value for defence and 0.3 to hit back. The results for
both 3 vs. 3 and 4 vs. 4 situations show that as the reward for a defensive action increases
so do the win ratios for RAB over AB. This result underpins our initial hypothesis that
in highly interdependent scenarios the RAB will perform better. Another correlation that
can be observed in both graphs is between the win ratio of RAB and the number of wins
and losses as a percentage of the number of simulations. This is not surprising, since as
the move interdependence increases the success of actions increasingly depends on what
the opponent will choose to do. Therefore, in a highly defensive scenario there is no sin-
gle move that guarantees at least a draw for a player. The opponent can counteract most
moves taken by the player leading to a higher standard deviation of the results.

Sticking to Target Improvement. One of the constraints that can significantly reduce
the branching factor is not allowing re—aiming. It means that if a unit has picked a
target it should keep shooting (stick) at that target. That is, from the time the unit has
picked a target until the target elimination, that unit has only one action available to it.
We would like to see whether not allowing units to re-aim could lead to a better real—
time performance. The results in Fig. 5 show a small advantage when units implement
the sticking to the target policy. Because of the reduced branching factor when no re-
aiming is allowed it is more advantageous to stick to the target when the number of
nodes is small. As the node budget increases, the performance of the method that does
not stick to its target slowly increases to over 50% in the 3 vs. 3 case. We can conclude
that sticking to a target is especially useful when there are strict real-time constraints,
however when the node limit is increased the performance of the no-sticking algorithm
improves.

Heuristic Search Applied to Abstract Combat Games 77

6 Conclusion and Future Work

One of the goals of our research was to examine whether search—based methods can
be used effectively in real-time domains with simultaneous move execution. We have
shown that heuristic adversarial search can be successful in small-scale abstract com-
bat games with real-time constraints. Moreover, experimental evidence suggests that
non—deterministic search methods perform better than traditional minimax algorithms
in games with higher simultaneous move dependence. This result shows that search
depth is not a crucial feature when designing algorithms for simultaneous move games,
as opposed to alternating move perfect information games, where search depth strongly
correlates with the quality of the found solution.

The best overall performer in the field of algorithms we have considered was a
naive implementation of RAB which is based on the idea of combining deep alpha—
beta searches with sampling to robustly compute actions in case of simultaneous move
dependencies. This result is very promising and encourages us to look at RAB improve-
ments that make better use of gathered sample data and would allow the algorithm to
return better estimates of the current state value. Scalability to larger problem instances
should also be addressed in order to make RAB truly suitable for handling close—combat
scenarios in RTS games. Another interesting line of future research could address more
theoretical aspects of generalized abstract combat games such as their computational
complexity and how to define the degree of simultaneous move interdependence rigor-
ously. Our next step will be to incorporate our methods into an ORTS [1] client, either as
part of a stand—alone RTS game Al or as a helper module in the graphical user interface
to alleviate the burden of manually micro-managing units in RTS game combat.

Acknowledgments

Financial support was provided by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

1. ORTS — a free software RTS game engine: http://www.cs.ualberta.ca/"mburo/orts.

2. B. Bouzy. Associating domain—dependent knowledge and Monte Carlo approaches within a
go program. In Proc. of the Joint Conf. on Information Sciences, pages 505-508, Cary, 2003.

3. M. Buro. Solving the Oshi—Zumo game. In Proceedings of the 10. Advances in Computer
Games Conference, pages 361-366, Graz, 2003.

4. B.Fogel, T. Hays, and D. Johnson. A platform for evolving characters in competitive games.
In Proceedings of CEC2004, pages 1420-1426, 2004.

5. R. Gozel. Firepower score attrition algorithms in highly aggregated combat models. RAND,
pages 47-60, 2000.

6. T. Hauk, M. Buro, and J. Schaeffer. *—minimax performance in backgammon. In Proceed-
ings of the Computers and Games Conference, 2004.

7. D. Knuth and R. Moore. An analysis of alphabeta pruning. Artif. Intell., 6(4):293-326, 1975.

8. J.E. Laird and et al. A test bed for developing intelligent synthetic characters. In Proceedings
of Spring Symposium on Artificial Intelligence and Interactive Entertainment, AAAI, 2002.

78 A. Kovarsky and M. Buro

9. W. Ruml. Incomplet tree search using adaptive probing. In Proceedings of the International
Joint Conference on Al, pages 235-241, 2001.
10. D. Slate and L. Atkin. Chess 4.5. Springer-Verlag, 1977.
11. J. Taylor. Lanchester models of warfare. In Operations Res. Soc. Vol 1+2, Arlington, 1983.
12. J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math.Ann.100, pages 295-320, 1928.

Modelling an Academic Curriculum Plan
as a Mixed-Initiative Constraint
Satisfaction Problem

Kun Wu and William S. Havens

Simon Fraser University,
Vancouver, BC
{Karen, havens}@cs.sfu.ca

Abstract. This paper describes a mixed-initiative constraint satisfac-
tion system for planning the academic schedules of university students.
Our model is distinguished from traditional planning systems by applying
mixed-initiative constraint reasoning algorithms which provide flexibil-
ity in satisfying individual student preferences and needs. The graphical
interface emphasizes visualization and direct manipulation capabilities
to provide an efficient interactive environment for easy communication
between the system and the end user. The planning process is split into
two phases. The first phase builds an initial plan using a systematic
search method based on a variant of dynamic backtracking. The second
phase involves a semi-systematic local search algorithm which supports
mixed-initiative user interaction and control of the search process. Gen-
erated curriculum schedules satisfy both academic program constraints
and user constraints and preferences. Part of the challenge in curriculum
scheduling is handling multiple possible schedules which are equivalent
under symmetry. We show to overcome these symmetries in the search
process. Experiments with actual course planning data show that our
mixed-initiative systems generates effective curriculum plans efficiently.

1 Introduction

The curriculum planning problem is defined as constructing a set of courses for
each semester - over a sequence of semesters - in order to satisfy the academic
requirements for an undergraduate university degree. There are many academic
constraints including course availability, prerequisites, breadth requirements, el-
igibility rules, and so forth. In addition, there are student imposed constraints
and preferences regarding which major to pursue and which courses to take in a
particular semester and which electives to choose. Thus curriculum planning is
a mixed-initiative (MI) constraint satisfaction problem (CSP) with preferences.
Traditional constructive algorithms for solving CSPs do not support MI reason-
ing well. In this paper, we explore a two phase approach. An initial schedule is
constructed using constructive backtrack search, which satisfies all the academic
constraints. Then a second semi-systematic local search algorithm is applied to

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 79-90, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

80 K. Wu and W.S. Havens

the initial solution. This algorithm supports MI interaction by allowing the user
to modify the current course plan directly through the GUI while maintaining
consistency of the academic constraints.

Figure 1 illustrates a plan produced by the system with semesters as rows
and courses as columns. Each cell of the plan can be seen as a variable, whose
domain is the set of all available courses. The number of columns in the table is
the number of semesters required to fulfill an academic degree. The maximum
number of rows is the maximum number of courses that a student may take in
each semester. When an initial plan is constructed and posted to the user (Figure
1), the user can directly modify the plan by changing the content of cells in the
table. For example, if the user plans to be on-leave for a term, he or she simply
changes the course load to zero and then clicks the “Make a New Plan” button.
The system will produce a new plan with zero courses assigned in that term
and then wait for the user to perform further verification and modification. Plan
construction, revision, and improvement proceed iteratively within a decide and
commit cycle until the user is satisfied with the result.

:"iluwpu;rhgil::'ahﬂ?; Computing Science | Course Planning Interface

Courses Flanning Screen

Here is the proposed schedule

Semester 2005-01 2005-02 2005-03 2006-01 2006-02 2006-03 2007-01 2007-02

course 5
#/semester

gl | S v 5 v 5 v |5 v 5 v 5 v 4 | w

crpt10l (s cnpt1SO [a empt201 (s cmpi275 (v empt320 v crpt381 v carpt310 (v cmpt3l (e
mah1S1 (v math1S2 (v cmpt2S0 (v 281270 (v cmpt307 v corpt371 v cmpld?) (v cmpld7S (v

Course list | mocm101 (v moth232 (v macm201 (v | buec232 (v | cmptdS4 v | cmpidll v cmptdl5 (v cmptdl2 (v
econ103 (v econl(S (v engll03 | cpt300 (v math308 v bus237 v cmpld0l (v macm31b (v
phd100 v eacl0l (v phye120 (v cmpt3S4 v cmesl10 v bus343 v cnns281 (v N/A

Make a New Plan! I

USER : test ROLE: ma)

Developed by ISL in Computer Sdence of SFU.

Fig. 1. Curriculum Planning System User Interface

Academic regulations used to construct system constraints handled in our
model are listed as follows. They forms the system constraints.

- All-different constraint: students should not take the same course twice.

- Prerequisite constraint: some courses must have other courses or a number
of credits as prerequisites. For example, in Figure 1, ‘cmpt300’ can not be
planned for a semester unless ‘cmpt201’ and 'macm?201’ have been planned
in previous semesters.

- Mandatory-requirement constraint: some courses must be taken in order to
obtain an academic degree, e.g., ’cmpt300’ and ’cmpt354’ must be taken in
order to obtain a bachelor’s degree in computer science.

Modelling an Academic Curriculum Plan 81

- Equivalent-course constraint: a course is equivalent to another course and,
thus, students can not take both courses for credits. For example, ‘ensc250’
is equivalent to ‘cmpt250’. Therefore, only one of these should be included
in a feasible plan.

- Breadth constraint: courses offered in a department are divided into different
academic levels and different areas. The school usually requires students to
take a number of courses in certain levels from several academic areas to
ensure students breadth knowledge coverage. For example, undergraduate
courses in computer science are numbered from 100 level up to 400 level.
Courses numbered 300 or higher are divided into six areas such as Al, net-
works, and so on. Students have to take five 300-level courses from five areas
among the six.

- Depth constraint: a number of courses in a higher academic level from the
same subject chosen to satisfy breadth requirements have to be taken, so
that students can gain a deeper knowledge in these subjects.

- Maximum-load constraint: a student’s course load can not exceed the max-
imum course load stated in the student handbook.

Symmetry occurs in many scheduling, assignment, and routing problems [12]
and in the curriculum planning problem as well. Courses in a semester are in-
distinguishable and can be freely permuted in a semester. In order to break
this symmetry and prune the search tree more efficiently, we add a partial-order
constraint to the model, which prevents to search equivalent schedules.

The rest of the paper is organized as follows: Section 2 discusses works in related
areas. Section 3 defines the system and system constraints; Section 4 describes
scheduling techniques used in the system; In section 5, we present the experimental
results of using different techniques; We conclude the paper in section 6.

2 Background

The curriculum planning problem is not a timetabling problem. The timetabling
problem is to fix a sequence of meetings between teachers and students in a pre-
fixed period of time with a set of constraints satisfied[1]. The curriculum planning
problem discussed in this paper is about producing curriculum plans for univer-
sity students to fulfill their academic career. Few works have studied curriculum
planning. Most university students still perform their planning manually, which
is error prone. Castro et al. [2] proposed a CSP model on solving curriculum
problems, which only handles prerequisite and maximum load constraints. Com-
pared with their model, our model manages higher number of general constraints
in the curriculum planning and also it integrates mixed-initiative reasoning into
the system.

A mixed-initiative (MI) system is one in which both the system and the
user have an active role to play in a dialogue or problem-solving process[5]. The
earliest investigations into the design of mixed-initiative dialogue systems were
presented in the paper of Whittaker and Walker [3] in 1990. At the early stage
of MI research, researchers usually designed MI systems with a concrete model

82 K. Wu and W.S. Havens

of initiative [3,4,5]. They believed that initiative should be equated with the
control over the flow of conversation so that the metaphor of conversation is
important in designing MI systems. Recently, Miller and Traum [6] questioned
- whether it is necessary to model initiative in order to design an MI system.
They ultimately argued that a MI system can be designed effectively without a
concrete model of initiative. Our model supports their view. It shows that when
the application domain is in a task-oriented collaborative planning environment,
it is not important for participants to realize who has the initiative. Thus, it is
not necessary to model initiative explicitly, but view it narrowly as controlling
how a problem is being solved.

Constraint programming techniques are widely used to model and solve plan-
ning and scheduling problems. Various efficient algorithms have been proposed
during the past few decades. They usually fall into three main categories: sys-
tematic algorithms, local search algorithms, and hybrid search algorithms. Sys-
tematic searching algorithms are built upon various backtracking mechanisms
[7]. They are complete and guaranteed to find a solution if one exists [7]. Local
search algorithms (e.g., min-conflict, tabu search) perform an incomplete ex-
ploration of the search space by repairing infeasible complete assignments and,
thus, they are incomplete and cannot guarantee a solution. Cooperation between
local and systematic search algorithms has been studied [9, 10, 11]. These hybrid
methods have led to good results on large scale problems. In this paper, we take
a systematic approach and take a hybrid approach in the second phase. Indeed,
our goal was to show that modelling the curriculum planning problem in differ-
ent ways at different processing stages using different methods is a good strategy
to produce high quality solutions.

3 Modelling

In this section, we describe the structure of the system first, and then give the
formal definitions of the system and system constraints.

3.1 The Curriculum Planning System

The model contains two components: a system agent and a user agent. The sys-
tem agent is responsible for maintaining system constraints and a current set of
feasible solutions, propagating the consequences of decisions, and constructing
the final solution incrementally. The role of the user agent is to make choices
among alternative plans and retract requests that have proved unsatisfactory.
The system agent has higher priority than user agents. System constraints de-
rived from academic regulations are registered with the system agent but not
shared with the user agent. Requests from a user are transformed into user con-
straints, which are registered with the user agent and shared with the system
agent. User constraints are unary and retractable as well.

The system uses a two-phase approach to solve the problem. It models the
first phase as a search problem and uses a modified DBT method with value
ordering heuristics to find an initial solution and then posts it to the user. In

Modelling an Academic Curriculum Plan 83

the second phase, a user specifies requirements by directly changing the con-
tent of cells in the plan (Figure 1). These assignments will be registered as user
constraints with the user agent. These newly added user requests may make the
problem over constrained. For example, because of not being familiar with course
regulations, a user requests to take two courses that are equivalent. In this case,
no solution can be found to satisfy all system constraints and the user requests
simultaneously. Thus, the system models the phase two into an optimization
problem based on the requests from the user, which includes creating new vari-
ables and posting new constraints if necessary. A systematic local search method
that combines min-conflicts local search with conflict-directed backjumping [10]
is applied. The system returns an optimal solution found in a given time frame
and takes the initiative to ask the user for further assistance.

3.2 Definitions of the System and Its Constraints

The problem is solved using constraint programming techniques. A Constraint
Satisfactory Problem (CSP) is a triple of (V,D,C), where V is a set of or-
dered variables, domain D is a set of possible values associated with a variable
v, where v € V, and C' is a set of constraints that restrict value assignments of
variables. In our model, every cell in the table contains a variable. V' is organized
as a matrix of variables with p columns and r rows (Figure 1). Here, p is the
number of possible semesters that the user may take to finish an academic de-
gree, and r is the maximum course load per semester. The collection of available
courses is the domain D. We use m to represent the size of D. An assignment pair
(vij,d;) for Vv;; € V indicates that the value d; is assigned to the variable v;;.
A solution is denoted as the matrix of variable assignment pairs that satisfy the
set of constraints. System constraints managed in the system are defined below.

Here we give formal definitions of the system constraints described informally
in Section 1 as follows:

All-different constraint: For any two variables v;;,vs, where 1 <4 < 7, 1 <
s<r, 1 <j<pandl <t < p,if vy # vy, and then for the corresponding
variable assignment pairs of (vi;,d), (vst,d2),dandds € D in the solution, it is
always true that d # da.

Prerequisite constraint: Case 1: D' : {d,,...,ds} € D and a value d €
D but d ¢ D', where 1 < r < mand 1 < s < m. Consider variables at
column 4, V' : {v14,..., v}, where 1 < i < p, for a variable v € V; may have a
variable assignment pair of (v,d), if and only if, it is true for Vd; € D’ where
r < k < s that v,y € V;, where V; : {(vi1,...,0r1),..., (Viy... ,Ury)} with
1 <y <i<p, there exists a variable assignment pair (v, d)) in the solution;
Case 2: For a value d € D, related to a threshold e, whenever € is reached
after a variable assignment (v;;,d;), the value d can be assigned to a variable
VUgy € V where y > j.

Mandatory-requirement constraint: A subset of values D’ : {d;,...,d;} €
D with j < m, for Vdy € D', v € V, such that a variable assignment pair
(v,dy) exists in the solution.

84 K. Wu and W.S. Havens

Equivalent-course constraint: In a subset of values D’ : {d;,...,d;} € D, if
3d, d € D' , such that there exists a variable assignment (v,d),v € V and then
for every other variable © € V and x # v, the variable assignment (z,d,) with
d, ¢ D'

Breadth/Depth constraint: A subset of domain values D’ is divided into
k groups, s.t. D' = {D},Dj,...,D.}. For VD] € D’,3d € Dj, s.t. there is a
variable assignment (v,d),v € V in the solution.

Maximum-load constraint: Let cy,...,c; represent the number of credits for
dy,...,d;, respectively. Let Max represent the constant defined in the system,
it is always true that

i
ZCT < Max
r=1

4 Planning Techniques

In this section, we first present the two algorithms and then discuss other tech-
niques used to speed up the performance of the model.

4.1 Searching Methods

Due to the characteristics of the problem, a systematic search method is used
in the first phase. A university freshman always starts with an empty academic
record. The record will be filled out semester by semester after the student starts
to take courses. Hence, it is proper to choose a search method that generates
a curriculum plan in the way of mimicking the procedure of a student’s taking
courses gradually. Many students in a department graduate with different aca-
demic records, which indicates that there are many feasible solutions. Hence,
a systematic searching method, which starts from a zero variable assignment,
fills out the plan chronologically and guarantees a solution, is used to solve the
problem in this phase.

The method is based on Ginsberg’s DBT [8] with two changes. One change is
not to perform variable reordering when a backtrack occurs during the search and
the other one is to add forward checking. Modifications are made because of the
characteristics of the partial-order prerequisite constraints. These constraints
propagate in one direction from earlier semesters to later ones. Thus, when
all cells in previous semesters have been assigned, the prerequisite constraint
posed on variables in the current semester can propagate properly. It cannot
propagate backwards to prune the domain of variables in previous columns.
Thus, it is desired to assign variables in a lexicographical order and not change
the ordering, hence, we remove the step of reordering variable when backtracking
occurs. However, adding forward checking [7] is to take advantage of the one-way
propagation of prerequisite constraints and reduce the number of backtracks.

The algorithm is listed in Figure 2. It starts from an empty variable assign-
ment with each variable having the full domain D (Line 1) as the live domain.
The loop starting at line 2 is repeated until all variables have been assigned

Modelling an Academic Curriculum Plan 85

; ¢ represents a variable € V' at position ¢ according to the variable ordering.

: the set stores all variables that have been assigned a consistent value.

: the set stores all variables that have not been assigned a value.

: the set of constraints on variable v;.

: the live domain of variables. D; represents the live domain for variable v;.

: the set of elimination explanations. VR; € R, R; is associated with v;. R; re-
members all reasons for eliminating certain values from the live domain D; for v;.
Each reason is represented as a pair composed of a value and a list of variables
d, (Vg,...,vy), where d € D, vy € V, and vy € V. The intended meaning is that v;
can not take the value d because of the current assignments of variables v, ..., vy.

<
N

HOQT e

Set A= ¢, U =1V, and then set R, = ¢, and Dy = D for Vv, €V
Begin loop
if U = ¢, returnA.
else
Select a variable v; € U according to the variable ordering,
Set R; based on C; and A and update live domain D; of 7 based on R;.
if D; # ¢
if 3d € D; s.t. Dy # ¢ for Yv, € U, then
9. Update live domain D, for Vv, € U and vy # v;.
10. Add (vs,d) to A,
11. Remove v; from U, go back to Line 3.
12. else
13. if R = ¢, return no solution.
14. else
15. find (vj,d;) be the last entry in A, s.t. v; € R;.
16. Remove (vj,d;) from A and add v; to U
17. Update R;, and R, for every variable v, assigned after v;.
18. Set @ = j, go back to Line 6.
19. End loop

S I o

Fig. 2. Modified dynamic backtracking algorithm

and U becomes empty and then a solution is returned (line 3). While U is not
empty, a variable v; is chosen from U based on the variable ordering rule (line
5); Update the live domain D; of v;, and remember the eliminating explanations
R; for v; (line 6). R; remembers reasons of pruning values out of the live do-
main D; for v;(See the definition of R; in Figure 2). If the live domain D; is not
empty, forward checking is performed on the future variables, which are those
unassigned variables in U. Forward checking is performed at line 8 by trying
to instantiate v; repeatedly until a trail instantiation is found, which ensures
no annihilation of the live domain of every future variable. With a successful
instantiation of v;, v; is removed from U, the assignment of v; is added into A
(line 10 and 11). If a domain-wipe-out occurs when pruning live domain D; of v;
or when performing forward checking on the future variables, then backtracking
from v; to v; is performed, where v; is the last assigned variable that occurs in
R; (line 16). If backtracking is needed while the set of eliminating explanations
becomes empty then the algorithm returns a failure (line 13).

86 K. Wu and W.S. Havens

In the second phase, Optimization is needed. Therefore, we use a system-
atic local search algorithm (see Figure 3), which is based on the search method
described in [10]. The algorithm extends the problem from a CSP to an opti-
mization problem. It looks for maximal solutions. A solution is maximal if all
variables are chosen maximal assignments. A variable v has a maximal assign-
ment d if the defined evaluation function f, not 3a € D,s.t.f(d) < f(a). D
is the live domain of v. Every time the algorithm reaches a maximal solution,
it checks if the solution satisfies all constraints. If so, it returns the solution.
Otherwise, it keeps looking for the next maximal solution. It remembers the one
with the best quality. Because the system is an interactive system, the response
time is crucial. Once the predefined search time is up, the current best solution
is returned.

the set of user constraints that currently registered with the user agent.

a collection of noGood.

the list of variable assignment pairs, initialized with the assignments from the GUI.
the best inconsistent solution that has found so far, initially B = A.

W P8

initialize A, and set B=A
loop
pick v from V;
assign a value d to v;
if an empty noGood is derived or predefined searching time is exceeded,
return B
end loop when (A is a mazimal solution)
if A is consistent with all C' and uc, return A
else
let B to be the better one between A and B, set A as a noGood , add it to R;
go back to line 3

CU N

VXD

Fig. 3. Systematic Local Search Algorithm

The algorithm operates as follows. It initializes the current solution A and
the best solution B with variable assignments obtained from the GUI. The loop
starting at line 2 is repeated until A is a maximal solution. Then it checks to
verify if A is consistent (line 7), if so, it returns A, otherwise it remembers the
better one between A and B, fails A as a noGood (line 8). Then it goes back to
line 3 to look for the next maximal solution (line 9). While A is not maximal,
a variable v is chosen based on the variable ordering rule (line 3). Then v is
assigned based on the value ordering heuristics and the maximal assignment
rule (line 4). Whenever an empty noGood! is derived or the predefined search
time is exceeded, the current best solution is returned (line 5).

! noGood is a list of variable assignments, whose partial assignment of variables is
precluded from any global solution.

Modelling an Academic Curriculum Plan 87

4.2 Symmetry Breaking

The curriculum planning problem, like many scheduling problems, encounters
the symmetry problem as well. We handle the problem with a partial-order
constraint. Courses are grouped into classes according to their subjects. Each
class has an associated value, which determines if it has a higher order than
another one. For example, all mathematics courses belong to the class of 'math.’
All computer science courses belong to the class of ’cmpt.” The system defines
that the ’cmpt’ class has a higher order than the 'math’ class. The symmetry-
breaking constraint that enforces the partial ordering on variables in a column
evaluates the ordering on variables by class values rather than domain values.
This is because the later case is too strict and may hinder the search by causing
unnecessary backtracks in the second search phase.

For example, suppose that the symmetry-breaking constraint directly uses
domain values to evaluate the ordering on those variables. There are three vari-
ables in the column @ (v1;, ve;,v3;), four domain values with d; < dy < ds < dy,
and three classes A1 < Ay < As, where dy € Ay, do € Ay, and d3,ds € As. The
three variables have the assignment pairs of {(vi;,d1), (va;,da), (v3i,d3), ...}
for a column i, where 1 < ¢ < p . When the user changes the assignment of
the variable vo; from one course dy to d4, provided no system constraints are
violated by the change, the partial order on the three variables evaluated by
domain values (dy < ds4 > d3) is broken. Thus, the constraint is violated after
the change, and then backtracking has to be performed. However, the ordering
among class values still exists (4; < Az < A3), and this backtracking can be
avoided if class values are used to evaluate the partial ordering on variables.
Hence, symmetry-breaking constraints check the ordering on variables in a col-
umn using class values, by which the efficiency of pruning the search space is
ensured. Meanwhile, unnecessary backtracks are avoided.

4.3 Variable and Value Ordering

It is known that, when using symmetry-breaking constraints, the variable and
value ordering are very important[13]. In particular, if variable ordering moves
from a direction that increasing conflicts with the symmetry-breaking constraint,
we can expect to gain from both the lower complexity and increased pruning [13].
Hence, variables are grouped by semesters, ordered from top to bottom within
a semester, and chronologically among semesters.

As for value ordering, courses loaded into the system are divided into different
classes. If two courses are in a same class, two courses are ordered by the value
of their integer representations; otherwise, a course that has a lower class level is
less than the one having a higher class level. Values in a live domain are chosen
based on value ordering heuristics. Value ordering heuristics simulates what a
human advisor would suggest. When students make their plans manually, they
usually choose courses under the guidance of an academic advisor. These rules
are transformed into value ordering heuristics stored in the system to guide the
search. Through the experimental results given below, we found that it can speed
up the search efficiently.

88 K. Wu and W.S. Havens

5 Experimental Results

We implement the proposed model on top of a Java-based Constraint Program-
ming (CP) framework called ConstraintWorks [14]. The experimental data are
from the computing science department at Simon Fraser University, BC, Canada.
The number of available courses are from 60, 80 to 120 courses. Experimental
results presented in Table 1 are based on the configuration of 39 variables and
40 system constraints. We compare the performance of different search methods
as the domain size changing from 60, 80, up to 120 in the first stage. We use the
number of backtracks and the number of iterations, which is the iteration num-
ber that the loop has repeated during the search, to evaluate the performance of
the method. Table 1 shows that as domain size increases, the number of back-
tracks and the number of iterations of both the local search method and the
systematic search method with no heuristics increase dramatically. In contrast,
the systematic search with heuristics can find a solution without backtracking in
all 3 cases. It maintains good performance as the domain size increases. Hence,
the results confirm that a systematic search method needs good heuristics to
have good performance, especially when the size of the domain becomes large.

Table 1. Performance comparison with 39 variables and 40 system constraints

Search method ‘size of domain‘number of backtracksnumber of Iterations

Systematic search 60 7189 4435
with no heuristic 80 32991 8997
106 99760 31216

60 740 10

Local search 80 6740 983
120 11811 5585

Systematic search 60 0 39

with 80 0 39

heuristics 120 0 39

For the second stage, we study the performance when the user’s requests
break numbers of constraints at different positions in the schedule. We define
the position in a plan as follows: for a plan with p number of columns, a slot
S is at column ¢ with ¢/p < 30%, then we say S is at an early position of the
plan; if 30% < ¢/p < 70%, then S is at a middle position, otherwise it is posted
at a late stage of the schedule. In order to compare the performance of the sys-
tematic local search method, we also ran the second phase using the systematic
search algorithm. In this case the systematic method solves the second phase as
a CSP. It returns a solution satisfying all constraints including newly added user
constraints if indeed a solution exists. Otherwise, it returns the old solution and
discards all newly added user constraints.

Modelling an Academic Curriculum Plan 89

Table 2. Performance comparison between the systematical Local search and the mod-
ified DBT search

Systematic Local Search [Modified DBT search
of breskmg Position in) of time used | # of time used
constraints the plan iterations (seconds) iterations (seconds)

1 Early 222 39 1222 171
Middle 31 44 910 79

Late 10 16 62 10

9 early 1838 151 1638 193
Middle 40 13 379 64

Late 194 25 70 11

3 early 13 9 93 29

Middle 2024 180 8324 6478
Late 3 2 3 4

Table 2 shows the performance of local search and systematic search at the
second stage when the posted user requests break one, two, or three system con-
straints respectively at different places in the schedule. The number of courses
is 120. Maximum course load is 12 credit hours and the number of total con-
straints is 40. The search time limit is three minutes. We test a special case:
the user requests posted in the middle and breaking 3 system constraints are
taking two equivalent courses. In this case, the systematic method takes a very
long time and returns a failure. The local search method halts with one user
constraint satisfied when the predefined search time is up. The results show
that the systematic local search method usually is able to solve the problem
within a minute and overall has better performance with respect to the response
time. The local search method can return a better solution in the given time
frame.

6 Conclusion

We have presented a mixed-initiative curriculum planning model. Due to the di-
versity in the characteristics and the needs of different users, we have integrated
mixed-initiative into the planning system, which provides a direct-manipulation
environment for the efficient communication between a user and the system.
Through a cycle of plan construction, revision, and improvement, the system
serves various users effectively. The solving process is split into two phases. A
backtrack-based systematic search method is used in the first phase to pro-
duce an initial solution. A systematic local search method is employed to con-
struct the final plan gradually under the interactive guidance from the user.
Partial-order constraints are added in order to break the symmetry arising in
the model. Value ordering heuristics are used as well to speed up the search.
Experimental results shows that the system generates effective curriculum plans
efficiently.

90

K. Wu and W.S. Havens

References

1.

2.

10.

11.

12.

13.

14.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, Vol.
13(2) (1999) pp. 87-127.

C. Castro and S. Manzano. Variable and Value Ordering: When Solving Balanced
Academic Curriculum Problems. In Proceedings of 6th Workshop of the ERCIM
WG on Constraints, Prague. June, 2001.

M. Walker. and S. Whittaker. Mixed-initiative in dialogue: an investiation into
discourse segmentation. In Proceedings of ACL90, (Pittsburgh, PA, 1990) pp. 70-
76.

C. Guinn. Mechanisms for mixed-initiative human-computer collaborative dis-
course. In Proceedings of ACL96, (Santa Cruz, CA, 1996) pp. 27-205.

J. Allen. Mixed-initiative planning: position paper. Presented at ARPA /Rome Labs
Planning Initiative Workshop, 1994.

B. Miller. Is explicit representation of initiative desirable? Working Notes of
AAAI97 Spring Symposium on Mixed Initiative Interaction. Stanford, CA, 1997.

P.Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, Vol. 9(3) (1993) pp. 268-299.

M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
Vol. 1 (1993) pp. 25-46.

P. Shaw, Using constraint programming and local search methods to solve vehicle
routing problems. In Proceedings of fourth Conference on Principles and practice
of Constraint Programming, (Pisa, 1998) pp. 417-431.

W. S. Havens, Bistra N. Dilkina. A Hybrid Schema for Systematic Local Search.
In Proceedings of Canadian Conference on AI 2004, (London, ON, Canada, 2004)
pp. 248-260.

N. Jussien, and O. Lhomme. Local search with constraint propagation and conflict-
based heuristics. Journal of Artificial Intelligence, Vol. 139 (2002) pp. 21-45.

P. Flener, A. Frisch et. al. Breaking row and column symmetries in matrix models.
In Proceedings of CP’2002, (Springer, 2002) pp. 94-107.

A. Frisch, B. Hnich et. al. Global Constraints for Lexicographic Orderings. Con-
straint Programming 2002. pp.93-108, 2002.

Actenum Corporation, ConstraintWorks, Vancouver, British Columbia, Canada,
www.actenum.com.

SWAMI: Searching the Web Using Agents with
Mobility and Intelligence

Mark Kilfoil and Ali Ghorbani

Intelligent and Adaptive Systems (IAS) Research Group,
Faculty of Computer Science,
University of New Brunswick,
Fredericton, NB, Canada
{mark.kilfoil, ghorbani}@unb.ca

Abstract. The rapid growth of the World Wide Web has complicated
the process of web browsing by providing an overwhelming wealth of
choices for the end user. To alleviate this burden, intelligent tools can do
much of the drudge-work. This paper describes the SWAMI system. It
combines multiple aspects of adaptive web technologies into a framework
for an intelligent web browsing system. It uses a multi-agent system to
represent the interests of the user dynamically and takes advantage of the
active nature of agents to provide a platform for parallel look-ahead eval-
uation, page searching, and cooperative link recommendation swapping.
The collection of agents reflects the user’s interests by self-organizing into
a hierarchicy according to the evidence of apparent interest demonstrated
by the user. Example results of the functioning prototype are presented,
demonstrating its ability to infer and react to a user’s interests.

1 Introduction

The continual growth and complexity of the World Wide Web has impacted
its effectiveness in a negative way. An individual user must sift through a vast
number of pages that are of little or no interest to them to discover pages that
address his or her interests. Tools have been developed to assist in this process,
one of the most successful being the keyword-based search engine, such as Google
[1]. However, keyword-based search engines require a user to carefully craft his
or her query to be an accurate statement of information desires, which is often
difficult to perform.

Another approach is to build web sites that are adaptive. Adaptive web sites
allow users to describe themselves (specifically including information desires and
form factors) and use this information to modify their responses to suit each user
(or group of similar users) individually.

This paper introduces SWAMI, a client-side, multi-agent-based approach to
personalizing the user experience of web browsing. Section 2 describes the do-
main of the problem, as well as describing other approaches, including other
agent solutions. Section 3 briefly describes the architecture of the SWAMI

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 91-102, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

92 M. Kilfoil and A. Ghorbani

system. In Section 4, preliminary results gathered from experimental data are
included. Finally, Section 5 presents a summary of the benefits and drawbacks
of the SWAMI approach, and discusses future directions for research.

2 Background and Related Work

The web is a relatively new phenomenon, and has elevated certain problems to a
critical level. In this section, the two most prominent problems of web navigation
and web personalization are discussed, and a short summary of current solutions
is presented.

2.1 Navigation

Because of the large size, dynamic nature and inconsistent structure, the web is
difficult to navigate. “Traditional”, direct navigation approaches depend on an
evaluation of the relevance of the currently viewed page as the best indicator of
the value of pages pointed to by it. This approach relies upon the benevolence
of the creator of the link [2], and the hope that by following a series of related
links the user will end up at another cluster of useful pages.

The traditional strategy closely resembles a depth-first graph search, where
leaf nodes are represented by pages of interest. Effectively, however, the user must
go “one page too far” in such a scheme, and travel deeper and deeper distances
from the original page they were browsing into possibly uninteresting areas. This,
intuitively, is the opposite of the desired result as pages directly connected to the
current page are most likely to be the most relevant pages to it [3].

An alternative approach is to use a search engine, which, in effect, recon-
structs the graph of the Web, reconnecting all the distant pages together into a
single layer. In this way, more relevant pages become more likely at an earlier
stage of browsing. In the case of Yahoo [4], this rearrangement is done explicitly
through a hierarchical, soft categorization of web site links. In contrast, Google
[1] builds a response page (effectively the top-level of a tree or entrance to a
graph) dynamically around a set of initial keywords in a query.

Once the user has selected a link from a search engine, however, they are out
of the arena of that technology and browsing returns to the traditional strategy.
Thus, this technology produces only a one-shot or one-level navigational benefit,
not ongoing navigational support.

An additional criticism of search engine approaches is that the criteria for
the evaluation of results is very specific: the keywords of the request are the
only measure of relevance to the user that the system can use, although there
are additional measures of the relative importance of a page (some partially
dependant of the particular request made) [2].

Adaptive web sites take a highly personalized approach, using knowledge
about the specific user to modify both the presentation [5] of individual pages
and/or the navigation from one page to another [6]. In this way, they can be
seen to either add additional links between pages of relevance to the user or do
a similar rearranging of the graph to the search engine, although beyond just

SWAMI: Searching the Web Using Agents with Mobility and Intelligence 93

a single level of rearrangement and navigational support. Prominent examples
of adaptive web systems include WebWatcher [7], AHAM [3] and AVANTI [8].
Each of these systems provides server-side adaptive navigation or presentation
based on perceived user characteristics.

Server-side adaptive web solutions are generally limited to a single web site or
set, of close web sites operated by the same people, something to which the search
engine approach is not limited. Client-side personalized approaches, on the other
hand, can work across all websites, but do not have the benefit of an internal
view of the website (to allow adaptations based on non-disclosed information) or
collaborative recommendations (because there is no common place for all users).
Client-side solutions include Letizia [3] and Personal WebWatcher [9], and to a
certain degree the proxy-based system PVA [10].

SWAMI is primarily a client-side solution, but it allows interaction with peers
and with internal sections of web sites by allowing parts of its representation to
be mobile, and move to a location to interact with the mobile parts of other
users’ SWAMI, or with representatives of an SWAMI-aware website.

2.2 Personalization and User Representation

Personalization on the Web means to modify the contents in or navigation on
a web page to reflect the particular user who is viewing it. It is adaptive to the
user’s characteristics or behaviour, responding in a way to enhance the user’s
experience.

SWAMI models the user’s apparent interests in order to make forward eval-
uations, user-centric web searches and navigation suggestions about pages to
visit. Interests are roughly characterized into three kinds: long-term inter-
ests, which are stable and rarely changing, although at a particular instant may
be unexpressed; short-term interests, which are sudden and strong, but van-
ish quickly, never to return; and periodic interests, which have the qualities
of both long- and short-term interests, in that they are strong for short periods
of time and relatively unimportant for the rest of the time.

Because specifying interests is difficult (perhaps even impossible) for a user to
express, the approach in SWAMI is to infer interests from the browsing behaviour
of the user. This has proven to be effective in other cases [11,12,13]. By having
the system continually learning about interests from the user’s ongoing browsing
behaviour, the problem of following interest changes is also addressed.

A similar approach to [14] has been taken in SWAMI for interest modelling,
but with a significant difference: where in [14] an externally organized hierarchy
was used and the user’s apparent interests mapped over it with pages placed
into nodes in that hierarchy, in SWAMI the hierarchy is developed entirely from
scratch, allowing it to be a customized size to reflect the user’s interests.

3 The SWAMI Architecture

SWAMI consists of a front-end interface, a user representation, and components
which perform page searching. It is implemented using a (custom) multi-agent

94 M. Kilfoil and A. Ghorbani

SWAMI-aware Website

Ordinary
Web site

Interface User

User Agent Representation

SWAMI
Rendezvous

Server

Fig. 1. A high level view of SWAMI

system (see Figure 1. This section describes each of these three components in
more detail.

3.1 The Interface

The user interacts with the system using the SWAMI interface agent. The in-
terface agent is currently integrated into a simple browser, allowing the agent to
observe user activity easily and report the search and evaluation results of the
user representation to the user. The browser also allows the user to display the
agents currently representing them.

3.2 The User Representation

The user is represented by a hierarchically-arranged collection of agents. Each
representation agent represents a cluster of pages the user has viewed, with the
hierarchies representing the relationships between clusters.

The hierarchies of agents are created using an online, dynamic clustering
technique. An agent collects pages as they are viewed by the user that are similar
to the pages it has already gathered. The agent continually checks the tightness
of its cluster, and if it is too loose (beyond a threshold), it will attempt to split
the collection of pages up into tighter subgroups. If it is successful, it creates
(or “hires”) new agents to represent the subgroups. These agents are positioned
below the original agent, so that incoming pages are first examined by the original
agent, and then may be passed down to the more specialized sub-agents, and so
on, until the best match has been made.

Initially, the interface agent collects all pages until a distinct group is discov-
ered, forming the first representation agent. If no current agent is representative

SWAMI: Searching the Web Using Agents with Mobility and Intelligence 95

of a given page, the interface agent holds on to it until a new group manifests
itself. Each of these top level groups is referred to as a “corporation”, and rep-
resents a major interest of the user.

Each agent has a measurement of “wealth”, which reflects the importance
and relevance to the user of the cluster the agent represents. The wealth com-
bines the agent’s size, the success the agent has had in finding new pages for
the user, the success the agent has had in having found pages accepted by
the user and a history momentum which allows an agent to rest on its laurels
briefly.

When an agent’s wealth falls below a threshold, the agent is removed from
the hierarchy and moved into a holding area. In this way, agents which are
not useful are pruned from the hierarchy. However, to represent periodic in-
terests, these agents are not immediately deleted, but rather they remain in
the holding area, continuing to decay until one of three conditions is satis-
fied: either they are the best representative for a new page the user views, they
represent a newly discovered subcluster better than a blank agent or they de-
cay to a point where they are considered truly unimportant and are removed.
In the first case, they become the head of a new corporation; in the second
case they are simply added into the hierarchy at the appropriate point. This
also allows subclusters to migrate to the most appropriate place; for exam-
ple, a “Mexican cooking” agent might be retired from beneath the general
“cooking” agent, but later be rehired under a “Mexican culture” agent. (Note
that agents are not labelled in this way; this is merely for illustrative pur-
poses.)

3.3 The Search Components

When a representation agent reaches a sufficient level of wealth and experience,
it may create search agents to work for it. Search agents take criteria from the
representation agent (the set of word features the representation agent has used
to form its cluster, for example) and attempt to find and evaluate pages on its
behalf.

Four types of search agents have been considered for the system: link-following
search agents, search-engine based search agents, topic expert consulting search
agents and colloborative search agents.

The link-following search agent follows links from pages the user has
already viewed and evaluates them based on its criteria. The agent acts similarly
to a user in its browsing pattern, but has more capacity to remember pages closer
to the original page and backtrack immediately to any page it has previously
viewed (rather than following a linear retreat strategy like a user.)

The search-engine based search agent can submit different combinations
of word features to a search engine and evaluate the results. It can take advantage
of the massive database of knowledge available to a search engine but provide
the personalization that the search engine lacks.

The topic expert consulting search agents are mobile agents which can
travel to SWAMI-aware web sites and interact with topic expert agents rep-

96 M. Kilfoil and A. Ghorbani

resenting the web page owner. These topic expert agents may have access to
information that cannot be gathered from simply browsing the pages, and may
be in a better position to provide recommendations. For example, the topic ex-
pert agents may know about arbitrary groupings of pages that do not have labels
on the pages themselves.

The collaborative search agent seeks to take advantage of the browsing
behaviour of people with similar interests. It travels to a host (referred to as the
“rendezvous server”) where it can interact with agents representing other people.
There, they can swap recommendations based on how similar the agents are to
each other. Agents of another type, rendezvous hosts, remain in the rendezvous
server at all times, interacting with all the visiting search agents and collecting
all recommendations that they have. The rendezvous host becomes a “memory”
for the rendezvous server, so that not all interactions between agents need be
synchronized.

3.4 Implementation

SWAMI was implemented from scratch in approximately 18000 lines of pure
Java code. The implemented system included a specialized agent implementa-
tion, page representation and comparison techniques, and a simple, integrated
browsing environment (see Figure 2) . The interface allowed traditional user
navigation (jump to URL, back button, follow a link) as well as providing a
list of recommendations provided by the system that the user could follow. The
interface also allows the user to inspect what agents have been created on their
behalf, what pages those agent have taken ownership of, and what features those
agents have extracted from the given pages.

) 53072 pouT

e (ipegeziante-pearmmi \ JRL Input Field Nevioat
vigation
oo | [mEosD | Bac | FORNIARD | HETORY | SWE | 2 gor%?olz R TR DETALS
| Sworm | i | Tita URL | Keywnrrt
EE San Juh 20 1937 Z -

OT ... q014_pona Tile jfpages
3014 phDE q panes /o

AL
S Jun 26 15 37 11 A
Sur Jun 25 1537 114l
Eun Juh 20 1937 11 .40

L

(=1

..A01Z poez
..an12_ g2l
e

=

or 1 Z,|
0T ;}!e.!{gages}g

viap wfzp vfzp vlap ofzp vizp vfzp vfzp vizp o fz0 wfzp vEep ofzp vizp vlzp vfzp viap wfzp vfzp viap ofzp vfzp vfap vfzp
wizp efzn vfz £ : v phus v vhas a4 ; =p e flns
Fienj Flarj flens Fren Aenij fleni fenj Fenj flenj Tedn becn tecn nedn bedn Tedn bedn he: 0 berdn Tedn bedn Tedn
Tectn bl hedtn B B Dedn e denw dew deres drnme drne deiw ivt @ivt Sivt vt Spt St Sive syt eyt divt eyt st
2iyt givt eiph St Sipt

- i
g0 D05
0 o0
:£1r3 pooE Page
® g00% poos Display)

[Even= 1grarsd: pageReouan

Evert igrared: pageResousd
Event 1grarad: pagefesouad Message
Evens 1grarad: chifdAgded Window

Fig. 2. A snapshot of the SWAMI interface

SWAMI: Searching the Web Using Agents with Mobility and Intelligence 97

4 Evaluation

The evaluation of the SWAMI system consists of verifying that it can detect the
growth and shift of user interests, provide a usable model of the user, and act
upon that model on behalf of the user.

To perform this evaluation, test data was generated that represents a web
of pages that are interconnected and that have localized coherence. From this
test data, numerous trial runs were conducted in order to demonstrate that all
of the key events expected of the system were observed, and that the system
was behaving as expected. Two illustrative example runs are highlighted here in
detail.

Because the test data was generated offline and never made available to a
search engine, no examination of the search-engine-based search method could be
attempted, without implementing a specialized search engine, which was beyond
the scope of this initial research.

4.1 Results

The following sections describe the results from two particular trial runs in detail.
These trial runs were chosen to clearly illustrate the performance of the system,
but are otherwise typical.

To describe the life-cycle of an agent, a chart showing the agents’ wealth
over time is used. This chart is calibrated in absolute terms, meaning that while
an individual’s age is calculated relative to when they were born, it has been
adjusted to the appropriate real outside age relative to the age of the Interface
Agent. The age also describes the number of unique pages viewed. Where a
line begins on the graph indicates when an agent was born; if the line ends
prematurely, that agent was removed from the system.

The lower threshold for an active agent’s wealth before being retired is 0.2;
only the Interface Agent cannot be retired. If their wealth continues to drop, an
agent will be removed when it falls below 0.15.

Pages within a particular group are known to be similar to each other, and
thus represent a topic. This is used both to train the system and to interpret
its results. Also, as the agents search, they discover pages in other page groups
that are relevant to the topic, thus forming a virtual topic group based on the
user’s demonstrated interests.

4.2 Example 1: Interest Shifts

This example demonstrates SWAMI’s ability to follow a user’s changing interests
and react accordingly. The page groups that the user visited can be seen in
Figure 3. On the weight track in Figure 4, five agents (in addition to the Interface
Agent) are shown.

Each agent was created when the system detected a cluster of similar pages.
The set of pages initially chosen all came from pre-generated group 40, fol-
lowed by a number of pages selected from group 38. Charlie.0 was created

98 M. Kilfoil and A. Ghorbani

First Test Run - Page Groups Visited
50

SRAKKK: SRRRRAK *
KAIHAK RRK ¥ X * *
45 - —
40 | * . %
SKRRRRRRIK
35 .
SKERIRIORRRIRK

o 30
=1
°
I x
(0]
o
&

20

15 HRAHHAAK

10

5

0

0 20 40 60 80 100 120
Agent Age

Fig. 3. The page groups visited by the user on the first example test run

when the subset of pages from group 40 were detected as distinct, at age 4.
At age 11, a second agent (Charlie_1) was created to take control of the sec-
ond subcluster discovered (for group 38). Note that while the pages were cho-
sen from the pre-generated group, the system itself has no knowledge of these
groups.

First Test Run - Agent Wealth Track

0.8 T T
Charlie —+—
Charlie_0 ---x---
Charlie_1 --—-%---
Charlie_2 B
Charlie_3 ——m-
Charlie_4 ---o--
£
©
(7
= i
€
[}
j=J
<<
Il
100 120

Agent Age

Fig. 4. Agent activity from the first example test run

SWAMI: Searching the Web Using Agents with Mobility and Intelligence 99

Between ages 14-36, links were followed semi-randomly from existing pages,
but not corresponding to any previous page. These pages were similar enough
to existing agents that Charlie 0 rose in wealth during this time period, and
Charlie_1 maintained a high wealth. Concentration by the user on a single pre-
generated page group again from age 36-43 resulted in the creation of a new
agent, Charlie_2, to handle a newly-discovered cluster formed out of those pages.
Another agent, Charlie_3 was created at the same time, as the new pages high-
lighted some previous cluster in the previous pages.

Between ages 53 and 77, recommendations made by Charlie_0 were followed,
resulting in that agent’s consistent wealth, while other agents diminished. At
age 77, a new topic was focused on, and a new agent, Charlie_4 was created in
response.

Note that when the user concentrated on a particular topic, the system re-
sponded by creating a new agent to handle this new topic when it detected it.
As the user drifted away from that topic (by not visiting again), the agents that
had been responsible for it waned in wealth.

Thelongevity of both Charlie 0 and Charlie 1 indicatelong-term interests. Char-
lie_0, in particular, has received a lot of attention from having suggestions followed.

Charlie 2 and Charlie_3 accurately map to short-term interests. In the case
of Charlie_3, no recommended pages from that agent were viewed, leading it
to degrade in wealth very quickly and disappear within about 5 page views.
Charlie_2 was a short-term interest which the user paid a little attention to.

Finally, Charlie_4 is a new interest to which the user is paying attention and
good recommendations have been found. The system responds quickly to the
newly discovered cluster, and it becomes the most influential among them.

This example has shown that the system creates new agents to handle new
user interests, and the wealth of those agents reflects the ongoing interest in the
topic they represent.

4.3 Example 2: Interest Specialization

In stark contrast to the previous example, this example demonstrates the cre-
ation of specialized agents for sub-topics discovered within the context of a larger
topic. While the page group activity shown in Figure 5 seems to be chaotic (par-
ticularly after age 57), the corresponding location on Figure 6 shows relatively
stable behaviour.

Charlie_0 represents a long-term interest (page group 42) which was concen-
trated on for a considerable period of time. Two sub-topics were detected from
within this one, represented by Charlie_.0_0 and Charlie_0_1. The second of these
was pursued momentary, but was forgotten for a period of time. Note that Char-
lie_.0_1 was retired but brought back instantaneously when the user returned to
that topic. At that point, it actually triggered a split, creating the very short
term topic represented by Charlie 0_1.0.

At approximately age 45, the system has detected that the user has decided to
view another topic intensely for which good suggestions could be found. This is
represented by Charlie_1, whose continued strength is due to its suggestions being

100 M. Kilfoil and A. Ghorbani

Second Test Run - Page Groups Visited
50

* *
*:
45
*
KKRE X % *
40 %
35 A**
*
o 30 e
3 * *
1G]
O 25 - -
o
& %
20 4
15 x .
* SRRRK K
10
SRRK
5
*
0 KK
0 20 40 60 80 100 120
Agent Age

Fig. 5. The page groups visited by the user on the second example test run

Second Test Run - Agent Wealth Track
0.8 T

T
Charlie —+—
Charlie_0 ---x---
Charlie_0_0 ---%---

Charlie_0_1 B 9
Charlie_0_1_0 —-m-

Charlie_1 ---o--

Agent Wealth

100 120

Agent Age

Fig. 6. Results from the second example test run

followed. The return of a peak in Charlie 0 at approximately age 72 was due to

following a link on a page suggested by Charlie_1 which led off to an older topic.
The relative stability of the wealth track of Charlie_1 after age 45 despite the

apparent randomness of the page group activity for the same time period is due

SWAMI: Searching the Web Using Agents with Mobility and Intelligence 101

to the agent having found pages within multiple groups which are similar to the
topic at hand. In this way, it has created a virtual group of pages centred around
the user’s interests.

5 Discussion and Conclusions

This paper describes a framework for a multi-agent system for providing per-
sonalized web page recommendations to users. The SWAMI framework features
a sophisticated user model using a social multi-agent system with a cost-driven
and time-variable interaction model organized into hierarchies of related topics.
Agents representing particular topical interests in this system can search for rec-
ommendations for the user with one of multiple strategies. Among those search
strategies is the ability of the search agents to become mobile. Mobile search
agents can travel to particular, SWAMI-aware web sites and interact with local
topic experts, or they can travel to SWAMI “rendezvous servers”, where they
can interact with user-independent collaborative recommendation agents and
with other search agents representing users.

Key features of this framework include local representation of a user’s inter-
ests (allowing the system to “learn once, apply everywhere”), the integration
of local, site-based and collaborative recommendations, and an active user pro-
file representation which takes into account short-term, long-term and recurring
interests, as well as the specialization of interests.

This holistic approach to web search represents a more realistic solution to
the problem of web search than site-specific or user-agnostic approaches.

Several trial runs were performed, from which typical examples were chosen
to examine in detail. These trial runs demonstrate that the agents do grow to
mirror the user activities and change over time to reflect changes in the user
intentions. Short-term, long-term and recurring interests have been detected by
the system, as well as specialization to accommodate a particularly important
interest. Recommendations could be gathered successfully by using a link-search
algorithm, by consulting with site experts or through interacting with a commu-
nity. Recommendations in the community were successfully distributed between
members of that community.

This work has demonstrated that a system of organized agents can represent
a user’s multiple, changing interests. Future studies will examine automatic pa-
rameter setting, alternative approaches to agent hierarchy reorganization, more
sophisticated page models and page comparison mechanism, “lazy” cluster up-
dates, standardized local expert and rendezvous interfaces and different search
mechanisms that can be integrated into the system.

Acknowledgments

This work was funded by the Atlantic Canada Opportunity Agency (ACOA)
through the Atlantic Innovation Fund (AIF) to Dr. Ali A. Ghorbani.

102

M. Kilfoil and A. Ghorbani

References

10.

11.

12.

13.

14.

Google: Google search engine (2004) http://www.google.com.

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46 (1999) 604-632

Lieberman, H.: Letizia: An agent that assists web browsing. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, San Mateo,
CA, USA, Morgan Kaufmann Publishers Inc (1995) 924-929

YAHOO!: Yahoo! search engine (2004) http://www.yahoo.com.

Kobsa, A., Koenemann, J., Pohl, W.: Personalized hypermedia presentation tech-
niques for improving online customer relationships. The Knowledge Engineering
Review 16 (2001) 111-155

Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modelling
and User-Adapted Interaction 6 (1996) 87-129

Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A tour guide for the World
Wide Web. In: Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann (1997) 770-775

Fink, J., Kobsa, A., Nill, A.: Adaptable and adaptive information access for all
users, including the disabled and the elderly. In Jameson, A., Paris, C., Tasso,
C., eds.: User Modeling: Proceedings of the Sixth International conference, UM97,
Vienna, New York, Springer Wien New York (1997) 171-173

Mladenic, D.: Personal WebWatcher: design and implementation. Technical report,
Department of Intelligent Systems, J. Stefan Institute, Slovenia (1996)

Chen, C.C., Chen, M.C.: PVA: A self-adaptive personal view agent. Journal of
Intelligent Information Systems 18 (2002) 173-194

Pazzani, M.J., Billsus, D.: Learning and revising user profiles: The identification
of interesting web sites. Machine Learning 27 (1997) 313-331

Chan, P.: Constructing web user profiles: A non-invasive learning approach. In:
KDD-99 Workshop on Web Usage Analysis and User Profiling, San Diego, CA,
USA (1999) 7-12

Schwab, 1., Pohl, W., Koychev, I.: Learning to recommend from positive evidence.
In: Proceedings of the 2000 International Conference on Intelligent User Interfaces,
New Orleans, LA, USA (2000) 241-248

Godoy, D., Amandi, A.: A user profiling architecture for textual-based agents.
In: Proceedings of the 4th Argentine Symposium on Artificial Intelligence (ASAI
2002) in the 31st International Conference on Computer Science and Operational
Research (JAIIO 2002), Santa Fe, Argentina (2002)

Queuing Local Solutions in Distributed
Constraint Satisfaction Systems

Ronnie Mueller and William S. Havens

Intelligent Systems Laboratory,
School of Computing Science,
Simon Fraser University,
Burnaby, B.C., Canada V5A 1S6
{rmueller, havens}@cs.sfu.ca

Abstract. When solving Distributed Constraint Satisfaction Problems
(DCSP), it is desirable that the search exploits asynchronism as much
as possible so that the employed agents can perform much of the work
in parallel. This allows to utilize the processing power available in a
distributed environment. However, in many of todays DCSP algorithms,
only a few agents are working at any given time and the others are
idling. This is caused by the fact that once an agent is consistent with
its neighbors, it becomes idling until it is forced by other agents to choose
a different assignment for its local variables.

In this paper we propose a method that utilizes the idling time of the
agents to increase the efficiency of a distributed backtracking algorithm
where agents have complex local problems and share variables among
them. An agent computes solutions to its local problem in advance while
it is waiting for incoming messages. This means that when an agent
finds a solution to the local problem that is consistent with higher order
agents, it not only informs lower order agents but continuous to search
for further solutions which then are stored in a queue. When the current
local solution becomes invalid due to a nogood received from a lower
order agent, the agent does not have to search for a new local solution but
can retrieve a precomputed one from the queue. This approach increases
the amount of work the agents can perform in parallel since higher order
agents search ahead for local solutions while lower order agents are trying
to expand the current partial solution.

Our experiments show that some increase in performance can be
gained by queuing local solutions in distributed backtracking.

1 Introduction

A Constraint Satisfaction Problem (CSP) is defined as a set of variables X =
{z1, 29, ...,2,} and a set of constraints C' = {c1, ¢a, ..., ¢,y }. The variables take
their values out of finite, discrete domains D, Do, ..., D,, respectively. Each
constraint ¢ involves a set of variables X, = {21, ..z }. A relation R, specifies
the allowed tuples for ¢ over the Cartesian product D.q,..,D.x. A constraint c
is satisfied if the values assigned to the variables in X, are allowed by R.. A

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 103-107, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

104 R. Mueller and W.S. Havens

solution to the CSP is found when all variables are assigned a value and all
constraints are satisfied. A CSP is binary if each constraint involves exactly two
variables. From here on, we will consider only binary CSPs.

A distributed constraint satisfaction problem (DCSP) is a CSP where the
variables and constraints are distributed among a finite set A = {ay, as, .., am } of
autonomous processes called agents. The agents have to coordinate their search
by message passing to find a solution to the DCSP that is globally consistent. In a
DCSP the constraints are partitioned into two categories, the ones involving two
agents are called inter-agent constraints and the ones within one agent are called
intra-agent constraints. In the simple case, each agent has exactly one variable
and all constraints are inter-agent constraints. A DCSP where the agents have
more than one variable is called a DCSP with a complex local problem. In a
DCSP with a complex local problem each agent a; has a local CSP which is
defined by the variables belonging to a; and its intra-agent constraints. In this
paper we call solution to the local CSP which is consistent with higher order
agents a local solution.

Some research has been done on how to solve DCSPs. Yokoo et al. [1,2]
present Asynchronous Backtracking (ABT), a backtracking algorithm that al-
lows the agents to work concurrently and make decisions asynchronously. Dis-
tributed Dynamic Backtracking [3] avoids adding permanent links between un-
related agents as ABT does. The distributed backtracking algorithm [4] uses the
given constraint structure for its backtracking. In all of the mentioned algorithms
so far, the agents have a static order among them. Armstrong and Durfee [5],
Yokoo and Hirayama [2], and Yokoo [6] have proposed algorithms that reorder
the agents dynamically to avoid bad assignments of higher order agents. In most
of the algorithms an agent only has one local variable, Armstrong and Durfee [5],
Silaghi and colleagues [7] and Yokoo and Hirayama [2] address the case where
agents have to deal with complex local problems.

In most of the algorithms mentioned above, only a few agents are working
at any given time while the others are idling. This is caused by the fact that
agents only change the values of their variables when they are forced to by other
agents. For constructive algorithms this means, that once an agent finds an as-
signment that is consistent with higher order agents, it becomes idling and waits
for the higher order agents to change or a nogood to be reported by a lower
order agent. When a agent receives a nogood message , it tries to find a dif-
ferent local solution that satisfies the nogood and is compatible with the same
values of variables shared with higher order agents that were used to compute
the previous local solution. This gives us the opportunity to compute local so-
lutions in advance, so an agent can respond quickly once a nogood message is
received.

In this empirical study we propose the novel idea for queuing local solutions
to increase the performance of a distributed backtracking algorithm. The basic
idea is that once an agents finds a local solutions, it continues to search for
additional local solutions and stores them in a solution queue, so that they are
available quickly in case a nogood message is received and the agent has to
backtrack.

Queuing Local Solutions in Distributed Constraint Satisfaction Systems 105

2 Queuing Local Solutions in Distributed Backtracking

We developed a backtracking algorithm based on Asynchronous Backtracking
(ABT) [1] but extended it so it can handle DCSPs with complex local problems.
Instead of choosing a value for its single variable as in ABT, the agents have to
search for a solution to their local CSP that is consistent with values of variables
shared with higher neighbors.

A queuing mechanism can easily be added to the backtracking algorithm de-
scribed above. Each agent employs a local solver which continuously searches for
solutions to the local CSP that are compatible with variables shared with higher
agents. The agent maintains a solution queue where the additional local solu-
tions are stored. All the local solutions kept in the solution queue are compatible
with variables shared with higher agents.

The agents start their local solver and react to incoming messages and events
from their solver. There are four events that are handled by the following pro-
cedures.

ok_message. This procedure is called whenever an ok? message is received. The
agent signals the new values of the shared variables to the local solver. The agent
clears the solution queue since the ok? message changes the agent_view, which
makes the local solution in the solution queue invalid.

nogood_message. The agent tries to dequeue the next local solution from the
solution queue and informs the lower neighbors. If the solution queue is empty
and the local solver has not reached bottom then no action is taken since the
local solver is still searching and will respond with a solution_found or a bot-
tom_reached event eventually. If the solution queue is empty and the solver has
already reached bottom then there are no local solutions left and a nogood is
created and sent to the culprit agent.

solution_found. When the local solver reports a new local solution, it is ap-
pended to the solution queue. If there is space left in the solution queue, the
local solver is forced to search for further local solutions.

bottom_reached. When the local solver reaches bottom, a nogood is sent to
higher order neighbors if the solution queue is empty. Otherwise the local solver
is stopped and the sending of the nogood is delayed until the solution queue
becomes empty.

3 Experimental Results

To study the effects of queuing local solutions we randomly generated graph
3-coloring. Our DCSP generator takes the four parameters (n,k,x,y) where n is
the number of agents, k the number of variables per agent, x the total number
of inter-agent links (shared variables) and y the total number of intra-agent
constraints.

We compare the performance by counting the number of total backtracks
needed by all agents to arrive at a global solution without counting work which
is done in parallel by multiple agents multiple times. Further, we do not count the

106 R. Mueller and W.S. Havens

number of backtracks an agent uses to search ahead to find local solutions that
are stored in the solution queue during its idling time. We call these backtracks
blocking backtracks.

In our experiments each agent is running on a separate computer. We tested
several problem classes with a various number of agents and inter-agent links. We
generated 100 DCSP instances of each problem class and compared the number
of blocking backtracks for maximum solution queue sizes of 0, 1,5, 10, 20 and 100.

Figure 1 shows the relative amount of blocking backtracks in relation to the
maximum solution queue size. For each problem instance we recorded the number
of blocking backtracks used to find the first solution to the DCSP for different
solution queue sizes. Then we calculated the ratio of the number of blocking
backtracks used with a particular queue size limit to the number of blocking
backtracks used without a solution queue (queue size limit 0) for each instance.
Every data point in the diagram shows the median of 100 problem instances. We
kept the number of agents, variables and intra-agent constraints constant and
show multiple graphs for various numbers of inter-agent links x.

1.2
1.0
2]
X
g 0.8
£ A\ —*
3 ‘.\
o \
206 | W g _ _ _ _ _______ .
2 0.4 Y A
0.2
0-0 T T T T 1
0 20 40 60 80 100

queue size limit

——Xx=16 —B— x=24 - - - x=40

Fig. 1. Blocking backtracks (5 agents, 10 variables each, 40 intra-agent constraints)

We can see that queuing local solutions can help to increase the performance
of distributed backtracking. In some cases a reduction in blocking backtracks
can be achieved by more than 50%.

The increase of the performance is related to the maximum size of the solution
queue. When a small limit on the solution queue size is used, the chance that a
valid solution can be retrieved from the queue when a nogood message arrives
is smaller then when a larger limit is used.

Queuing Local Solutions in Distributed Constraint Satisfaction Systems 107

Increasing the maximum solution queue size beyond a certain size (for our
problems around 20) does not reduce the number of blocking backtracks any
further. We think that this is caused by the limited time an agent has available
to search for additional local solutions before a lower order agent sends a nogood
message.

When only a small number of variables are shared among agents, the increase
in performance is generally smaller then when more variables are shared.

4 Conclusion

We presented the new idea of queuing local solutions to increase the performance
of a distributed backtracking algorithm. Our approach uses the time an agent
waits for incoming messages to search ahead for additional local solutions which
are stored in a solution queue and retrieved when a nogood message is retrieved.

The results from our experiments are promising, they show that queuing
local solutions increases the performance of distributed backtracking. We found
that the performance gain depends on the structure of the DCSP. Queuing local
solutions performs well for tightly coupled agents, but is less effective when
agents only share few variables among them.

References

1. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: International Conference on
Distributed Computing Systems. (1992) 614-621

2. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint sat-
isfaction problem: Formalization and algorithms. Knowledge and Data Engineering
10 (1998) 673-685

3. Bessire, C., Maestre, A., Meseguer, P.: Distributed dynamic backtracking. In Pro-
ceedings of the IJCAI’01 workshop on Distributed Constraint Reasoning (2001)
9-16

4. Hamadi, Y., Bessire, C., Quinqueton, J.: Backtracking in distributed constraint
networks. In Proceedings ECAT’98 (1998) 219-223

5. Armstrong, A., Durfee, E.H.: Dynamic prioritization of complex agents in dis-
tributed constraint satisfaction problems. In AAAI97 Workshop on Constraints
and Agents (1997) 8-13

6. Yokoo, M.: Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. In Proceedings of the First International Conference
on Principles and Practice of Constraint Programming (CP-95) 976 (1995) 88-102

7. Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Asynchronous search with aggrega-
tions. In: AAAT/TAAIL (2000) 917-922

A Bayesian Model to Smooth Telepointer Jitter

Jeff Long and Michael C. Horsch

Department of Computer Science,
University of Saskatchewan,
Saskatoon, SK, Canada STN 5A9
jrl909@mail.usask.ca
horsch@cs.usask.ca

Abstract. Cursor prediction is the problem of predicting the future
location of a user’s mouse cursor in a distributed environment where
network lag is present. In general, cursor prediction is desirable in order
to combat network jitter and provide smooth, aesthetically pleasing ex-
trapolation. Gestures can also be difficult to interpret if network jitter
becomes too severe.

This paper proposes a Bayesian network model for addressing the
problem of cursor prediction. The model is capable of predicting the fu-
ture path of the cursor while drawing a gesture, in this case an alphabetic
character. The technique makes use of Bayesian learning techniques in
order to obtain realistic parameters for the proposed solution. The model
is then implemented and tested, yielding substantial improvements over
previous methods. In particular, the model is at least twice as accurate as
a simple linear dead reckoning algorithm run on the same dataset. Fur-
thermore, a by-product of the model is its ability to correctly recognize
the alphabetic character being drawn 84% of the time.

1 Introduction

Cursor prediction is an interesting problem that has received some amount of
recent attention ([7,6]). In general, cursor prediction is desirable in order to
combat network jitter and provide smooth, aesthetically pleasing extrapolation.
This problem primarily arises in the domain of networked groupware, and gesture
interpretation. However, the challenges in thus far finding a suitably accurate
prediction method have been daunting.

This paper proposes a Bayesian network model for addressing the problem of
cursor prediction. The model is capable of predicting the future path of the cursor
while drawing a gesture, in this case an alphabetic character. The technique
makes use of Bayesian learning techniques in order to obtain realistic parameters
for the proposed solution. The model is then implemented and tested, yielding
substantial improvements over previous methods [7]. In particular, the model is
at least twice as accurate as a simple linear dead reckoning algorithm run on
the same dataset. The model is also able to correctly recognize the alphabetic
character being drawn 84% of the time.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 108-119, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Bayesian Model to Smooth Telepointer Jitter 109

Section 2 provides an outline of the problem of predicting cursor movement,
and some previous work in this area. Section 3 presents a brief introduction to
Bayesian networks, as well as techniques used for learning Bayesian networks.
Section 4 describes the proposed Bayesian model for smoothing telepointer jitter,
while Section 5 describes the results of this model. Section 6 discusses future work
to be done in this area, and Section 7 concludes the paper.

2 Cursor Prediction

The problem of cursor prediction primarily arises in distributed groupware en-
vironments. In such applications, participants are typically represented by some
form of cursor, which they may move around the screen and, depending on the
application, may use to draw symbols and characters which can be viewed by
other participants in the networked environment.

Interpretation problems of these movements and gestures can arise, however,
when there is jitter present in the network. Jitter is defined as variable network
latency. Sometimes, due to external factors such as heavy network traffic, cur-
sor update packets from remote participants can be delayed or even lost in the
network. As a result, the local side of the application may have to wait up to
several hundred milliseconds for an update, only then to receive all of the delayed
packets in a single 'burst.” The visual artefacts of jitter will be a freezing’ of the
cursor for some amount of time, before it ’skips’ to the new location in a very
jerky and unnatural manner. The longer the jitter period, the worse this effect
is. In general, this effect is aesthetically displeasing to users [7]. Furthermore,
accurate gesture interpretation begins to become more difficult once jitter peri-
ods reach 200ms [6]. Ideally, a smooth and accurate gesture-prediction technique
would help to address both of these issues.

Gutwin, Dyck and Burkitt [7] investigated solving this problem using a very
simple linear dead-reckoning algorithm. The gestures being predicted were all
reasonably complex, for the most part consisting of alphanumeric characters.
Jitter of varying lengths was introduced into the system to ’delay’ the receipt of
cursor update messages. In the event of missing data at a cursor-update timestep
(generally, every 20 ms), the cursor’s next position would be extrapolated using
the equation:

Tig1 = T + Vi, + Ag, (1)

Vz, represents the cursor’s velocity in the x-direction at time ¢, while A,
represents the cursor’s average acceleration in the x direction. The equation is
similar for the y-coordinate. This equation is presented here exactly as it appears
in Gutwin, Dyck and Burkitt [7].

The problem with the dead reckoning algorithm, according to Gutwin, Dyck
and Burkitt [7], is that its error rate seems to grow faster than the visual
discontinuities caused by network jitter that make interpretation difficult. They
also found that omitting the acceleration term from the dead reckoning model in
fact increased the predictive performance. Although the authors do not discuss

110 J. Long and M.C. Horsch

this finding, it likely arises because over a long jitter period, adding a constant
acceleration to the cursor’s velocity will cause it to reach highly unrealistic speeds
that would never result from a real user. They also set a bound on the accuracy
a prediction algorithm would have to achieve in order to significantly improve
gesture interpretation. For a jitter period of 320ms, this bound is a Maximum
Mean Error (i.e. the largest error per jitter period) of 40 pixels for their particular
data set. The error of dead reckoning is over four times this, at 188 pixels, on
this same data [7].

Clearly, what is required is a prediction algorithm that can maintain its
accuracy for a much longer interval than dead reckoning. In search of such a
model, we present the following section as an overview of Bayesian networks and
Bayesian learning as background for the solution that is proposed.

3 Bayesian Networks

In this section, we briefly review our terminology used to discuss Bayesian net-
works. A Bayesian network (sometimes also called a Bayes net) is a Directed
Acyclic Graph (DAG), consisting of a set of nodes, which represents random
variables, and a set of arcs which represent conditional dependence between
variables. Associated with each node is a Conditional Probability Table (CPT),
which lists the probabilities that the node will take on a given value, given the
possible states of its parents in the graph. Taken together, the CPTs are suf-
ficient to specify the full joint probability distribution (JPD) of the network.
Probabilities of interest are calculated by summing over unobserved values and
multiplying the CPTs of the network together.

The major strength of Bayesian networks is their ability to compactly repre-
sent conditional independence. Unless the graph is very dense, this can result in
an exponential savings in space requirements over the pure JPD.

Working directly from such a JPD, probabilistic inference is also exponential.
It has been shown that in the general case, inference in a Bayesian network is
also NP-hard. However, quite often this inference can in fact be very eflicient,
depending on the network structure. Again, this is because the graph takes
explicit advantage of conditional independence which is present, but not always
obvious, in the full JPD. In Section 3.2, we will examine restricted classes of
Bayesian networks for which inference is known to be tractable.

3.1 Learning Bayesian Networks

There are several ways in which Bayesian networks can be constructed. Often,
the structure of the network is constructed manually by domain experts. The pa-
rameters of the network, namely the CPTs, can be assigned manually, or learned
from data. In the case of complete data, this task is trivial and involves little
more than book-keeping. When data is incomplete, approximation algorithms
such as Gibbs’ sampling [8] and Expectation-Maximization [4] must be used to
average over the missing data. Such approximations usually suffer from the limi-

A Bayesian Model to Smooth Telepointer Jitter 111

tations that they require an exponential amount of run-time for accurate results,
or run the risk of being fooled by local maxima.

The above algorithms for parameter learning assume that the structure of the
network is known. Automatically learning the structure of the network from data
is a considerably more difficult proposition. This difficulty arises from the fact
that the number of possible network structures will be worse than exponential
in the number of nodes. This problem is discussed in the literature ([8,9]), but
in this paper, we chose instead to focus on tractable, restricted network models
in order to circumvent this problem. It is these models that are presented in the
following section.

3.2 Restricted Classes of Bayesian Networks

A simple but surprisingly effective restricted network is the so-called Naive
Bayesian Classifier. This is a Bayes net for which the variables are divided be-
tween Attribute nodes and a single Class node. The only arcs allowed in the
network extend from the class node to each of the attribute nodes. This means
that all of the attributes are assumed to be conditionally independent, given
the class. Of course, this assumption may not be very realistic, and hence the
“naivete” of the model. As their name implies, Bayesian classifiers are typically
used for classifying objects of interest into distinct categories or classes. In this
regard, the CPTs of the of the attribute nodes represent the probability that
a particular attribute will be present, or take a certain value, for each possible
class.

Most often in such networks, we are trying to infer the class variable given an
observation of the attributes, or perhaps a subset of them. It is a simple matter
to show that this calculation is always polynomial in the number of attributes
and classes. Let C be our class variable, ¢ a possible value of the class variable,
and ay,...,a, our attributes. By Bayes’ Rule we have:

plai,...,a,|C =c)p(C = c¢)

p(C =clai,...,an) = (2)

pla,...,an)
p(ai,...,an) is simply the normalization constant. By the structural restric-
tions placed on Bayesian classifiers, we also know that the attributes a1, ..., a,

are conditionally independent given the class, C'. Therefore, the above can be
simplified as follows:

p(C = clay,...,a,) = ap(C = ¢) [[pl@ilC = ¢) (3)

All of the probabilities on the right-hand side of this equation can be read
directly from the network. Thus, calculating the desired probability requires
only the multiplication of n terms from the network. This calculation must be
repeated once for each possible class (both to determine the most probable class
and to obtain the normalizing constant), assuming m classes, then the time
complexity of this operation is O(nm).

Friedman, Geiger and Goldszmidt [5] propose a Bayesian network model that
partially eliminates the strong assumption of conditional independence between

112 J. Long and M.C. Horsch

attributes of Naive Bayes, while maintaing polynomial computation properties.
This model is termed Tree-Augmented Naive Bayes (or TAN). TANs are simi-
lar to Naive Bayes except that a limited number of interactions are permitted
between the attribute nodes. Specifically, leaving aside the class variable, the
attribute nodes must form a tree. A directed acyclic graph, such as a Bayes net,
is a tree if and only if each node has exactly one parent in the graph, with a
single exception that has zero parents which we refer to as the root node. In
the context of a TAN, we temporarily omit the class node, and construct a tree
from all the attributes. Once this is done, we simply add the class variable to the
network, and designate it as a parent of every other node. Thus, every attribute
node will have as parents the class node and at most one other attribute node.

Intuitively, it does seem that the increased expressive power of TANs should
result in better prediction accuracy than Naive Bayes. Friedman, Geiger and
Goldszmidt [5] show this is indeed the case with some empirical results. Other
results which compare TAN with Naive Bayes confirm this [1, 2]. Furthermore,
not only is inference polynomial in a TAN, but they maintain the highly desirable
property of Naive Bayes that they can be induced from data in polynomial time,
the reason being that the in-degree of each node is bounded. The method to do
so is based on a much older result by Chow and Liu for constructing Bayesian
network tree structures [3]. Friedman et al. [5] show the details of how to use
this result to achieve the polynomial-time learning algorithm.

4 A Bayesian Network for Cursor Prediction

As mentioned in Section 2, it seems that what is required for the problem of
gesture prediction is a model with higher long-term accuracy. In particular, the
model must be able to capture the long-term direction and velocity changes of
the cursor, which dead reckoning fails to do. Tree Augmented Naive Bayes seems
to provide the framework we need in the following manner.

As in the study by Gutwin, Dyck and Burkitt [7], we will restrict our at-
tention to gestures consisting of a discrete set of characters. In particular, these
characters will be the lower-case letters of the English alphabet. For each such
character, we have a set of data consisting of cursor positions at regular inter-
vals (roughly every 20 ms). This data all stems from a single user, and thus
represents the manner in which this single user habitually draws these charac-
ters (ramifications of this will be discussed later). We use this data to build a
Tree Augmented Bayesian network that can predict the general shape of these
characters.

Several model structures were considered in the design of this network. The
principal problem is in determining exactly what the attribute nodes of the
network will represent. Absolute position has far too many values, and is not
independent of where the character is being drawn on the screen. One possible
model we considered assumed each attribute node x; to be the cardinal direction
of the cursor’s travel at time 7. Actual velocities were calculated using a simple
modified version of dead-reckoning, with provisions to account for change in

A Bayesian Model to Smooth Telepointer Jitter 113

cardinal direction as predicted by the model. This model was later modified to
include the prediction of both direction and velocity in a single Bayesian network.

The final proposed structure of the network is as follows. The attributes
nodes of the network represent cursor velocities at each time-step. There will
be one set of such nodes for velocity along the x-axis, and another for velocity
along the y-axis. If node X; represents the cursor’s x-velocity at some time t,
then node X, represents the cursor’s x-velocity at time t+20 (in milliseconds).
Each node X; has an arc in the direction of node X; 1. Thus, each such node will
have exactly one parent except for node Xy, fulfilling the structure requirements
for Tree Augmented Bayes. The set of nodes representing y-velocity follow an
identical structure to that just described. The classnode of the network is the
character being drawn, and thus has 26 possible values.

It is worth noting than in this model, the X; nodes are conditionally inde-
pendent of the Y; nodes, given the class. We considered the model in which node
X;+1 depends on both X; and Y; (and similarly for Y; + 1), but decided against
it in order to maintain the guaranteed computational advantages of the TAN
structure.

This representation still poses some challenges, however. The first is devising
a scheme to reduce the number of values that the velocity nodes may take.
In order to keep the CPTs to a manageable size and to keep the network as
general as possible, it was decided to use discretized velocity categories as the
values for the velocity nodes. The velocity nodes in the network, then, only
represent the cursor’s velocity at the given time-step. Each node may take up
to 11 values; each such value is a discretized velocity range, measured in pixels
per timestep. The granularity of the discretization is 10 pixels per timestep.
Thus, the 11 value categories range from less than -50 pixels/timestep to greater
than +50 pixels/timestep. This keeps the number of rows in each conditional
probability table to a 'mere’ 286. Note that there is no claim of this discretization
being optimal; the discretized ranges were determined based solely on manual
examination of the general range of the data. Optimizing this process could lead
to improved performance of the resulting network.

Another issue is the question of how many velocity nodes to include in the
network. The problem arises from the fact that different characters take different
amounts of time to draw. One potential solution would be to build a different
network for every different character. Such multinets are discussed briefly in
Friedman et al. [5]. However, even for individual characters, the time will vary
from case to case, and thus it was decided to simply build a single network with
a number of nodes sufficient to handle the character with the longest average
draw time. Characters that took fewer time-steps to draw would simply have
‘missing’ data values for the later velocity nodes.

With these questions resolved, we have finalized the TAN structure of the
proposed network. All that remains is to learn the probabilities for each of the
nodes from the data. Figure 1 is a diagram of the structure of the completed
network.

114 J. Long and M.C. Horsch

Fig. 1. The structure of our Bayesian network for cursor prediction. The class node,
denoted ’letter,” represents the character that the user is drawing. The attribute nodes
represent velocity along the x and y axis respectively

5 Results

The proposed Bayesian network was implemented, using a dataset of 21 of the 26
letters of the English alphabet, with approximately 25 samples for each character,
all obtained from a single user. Characters that required more than one mouse-
stroke to be drawn on the screen were omitted from the data for reasons of simplic-
ity. This is in fact only a very small amount of data for a Bayesian network of this
size, and it is possible that better results could be obtained with a larger dataset.

The data was then randomly split into 80% training data and 20% testing
data, which was then used to compare the proposed Bayes’ net approach against
dead reckoning and linear extrapolation. The process was then repeated several
times to obtain different random splits of the data.

The conditional probabilities for the model were learned from data using the
maximum a posteriori (MAP) learning rule (as implemented in Norsys Netica
[10]). Netica was also used to perform the experimental inference in the model.
Given that inference in Bayesian networks can often incur severe computational
costs, a major concern was the feasibility of an 161 node network with 236
row entries at each node. However, the proposed TAN structure seems to have
resulted in a practically efficient network structure. Even on a simple desktop
PC with an AMD-K63 450Mhz processor and 512MB of RAM running Windows
XP, inference in the network took no noticeable amount of time. Learning the
required probability tables also took no more than 2 seconds for this small data
set. In our case, there was no need to learn network structure.

The principal error metric used to measure the results of the proposed model
was Mean Maximum Error, which is the same metric used by Gutwin, Dyck and

A Bayesian Model to Smooth Telepointer Jitter 115

Table 1. Results of the three different model approaches as applied to our dataset. All
values are given in units of number of pixels

| [MME[MSD]
Dead Reckoning 572 | 754
Linear Extrapolation| 300 | 329
TAN 197 | 145

Burkitt [7] in their earlier study. This metric is defined as the average of the
maximum distance between a predicted point and the temporally corresponding
real point in each jitter period. A simple dead reckoning prediction algorithm
run on our data set resulted in a Mean Maximum Error of 572 pixels. Gutwin,
Dyck and Burkitt [7] postulate that simple linear extrapolation (i.e. leaving
out the acceleration term from the dead reckoning algorithm) can lead to better
results, and we found this to be the case here, yielding an MME of 300 pixels.
The Bayes net representation significantly outperforms both, achieving an MME
of 197 pixels. Gutwint, Dyck and Burkitt [7] report a Mean Maximum Error of
188 pixels for dead reckoning in their earlier study; however, this study was done
using a different data set than what was used in this paper. With an absolute
scale such as a pixel count, different size and timing of the gestures used could
quite possibly account for this discrepancy. For instance, the gesture displayed
by Gutwin, Dyck and Burkitt [7] in their study took at least 1440ms to draw,
whereas the very same character in our dataset took no more than 800ms. One
would expect that gestures drawn more quickly would be more difficult to predict
- this could be a potential area for future investigation.

However, the Bayesian model displays even better results when we consider a
different metric which we will term Maximum Spatial Displacement (MSD). We
define this metric to be the maximum distance in pixels between each predicted
cursor point and the spatially closest point on the cursor’s true path. This is in
contrast to the Mean Maximum Error, which measures the distance between a
predicted cursor location and the cursor’s corresponding true temporal location.
In our opinion, the MSD is an important metric to consider, since it is a better
indicator than the MME of whether or not the actual shape of a gesture is cor-
rectly predicted. Although the speed at which a gesture is drawn may vary from
the prediction to the actual data, it seems reasonable that gesture interpretation,
one of the major concerns of Gutwin, Dyck and Burkitt [7] would improve if the
predicted cursor position stayed within some boundary of the actual gesture.
This is a factor that MME does not take into account. It is quite conceivable
that a given prediction may have a poor MME score, even though when visually
plotted it looks extremely similar to the actual gesture being predicted. In our
experiments, the MSD for dead reckoning is 754 pixels, which is even worse than
its MME. Linear extrapolation does better, with an MSD of 329 pixels. However,
for the Bayesian model, the MSD is only 145 pixels, substantially less than its
MME. This result would seem to indicate that the Bayesian model does very well
at predicting the true path of the gesture, but is less successful in predicting the

116 J. Long and M.C. Horsch

Character prediction with 320 ms. jitter
600 T

‘ Original Data —+—

500 1

450 |- i

350 1
300 1

250 1

200 1 1 1 1 1 1 1
120 140 160 180 200 220 240 260 280

X

Fig. 2. Original data of a hand-written lower-case e. Each point represents the cursor’s
x-y coordinates at 20 ms. intervals

speed at which it will be drawn. However, we must be careful when considering
this metric, as it tends to reward ’conservative’ prediction algorithms - that is to
say, algorithms that do not in fact move the cursor very far in between updates
and thus do not stray far from the true path of the character.

Key to the Bayesian network approach is the model’s ability to predict
which character is currently being drawn. It does this implicitly every time
inference is performed to predict the next position, but it can of course also
be queried explicitly. After 8 positional updates (with each such update corre-
sponding to roughly 20 ms of real time), the model predicts the correct char-
acter 52% of the time. After 24 updates, the correct prediction ratio rises to
74%, and after all updates (which varies from about 30 to 80 updates de-
pending on the character) reaches 84%. Since dead reckoning makes no at-
tempt at such prediction, it is impossible to compare the two methods in this
regard.

The following images depict the output of the prediction algorithm, as com-
pared with a dead reckoning approach very similar to that used by Gutwin, Dyck
and Burkitt [7]. For these images, we assumed a jitter period of 320 ms. Each
plotted point indicates a pixel coordinate, and the time interval between each
point is 20 ms. In the two predicted figures an expected velocity is calculated
(using dead reckoning in figure 3 and the Bayesian model in figure 4) to predict
the position of the next point. When an update is received, we immediately plot
the true location and begin the prediction process again. In these examples, it
seems visually clear that the Bayesian model provides more accurate long-term
prediction than simple dead-reckoning, in accordance with the analytical results
above.

A Bayesian Model to Smooth Telepointer Jitter 117

Character prediction with 320 ms. jitter
1000

Dead Reckoning Prediction —+—

500 - 1
400 1

300 - 1

200 1 1 1 1 1
-300 -200 -100 0 100 200 300

Fig. 3. Dead reckoning prediction with jitter period of 320 ms. Each point represents
the predicted x-y coordinates of the cursor at 20 ms. intervals. Every 320 ms., the
cursor’s position is instantly corrected to the true location

Character prediction with 320 ms. jitter
800 T T T

TAN Prediction ——

700 1

500 1

300 b

200 1

-100 1 1 1 1 1 1 1
120 140 160 180 200 220 240 260 280

X

Fig. 4. Bayesian network prediction with jitter period of 320 ms. Each point represents
the predicted x-y coodinates of the cursor at 20 ms. intervals, as determined by our
TAN model. Every 320 ms., the cursor’s position is instantly corrected to the true
location

118 J. Long and M.C. Horsch

6 Future Work

One shortcoming of the discussion above is the metric used to measure error in
the prediction. In this paper, a Mean Maximum Error measured in absolute pix-
els was used so as to be consistent with the previous work in this field; however,
it seems very likely that such a method is highly sensitive to differences in scale
and cursor speed of the data. In this paper we propose another error metric,
Maximum Spatial Displacement, to be used in conjunction with MME, but it
suffers from the same problem of being measured in absolute pixels. It would be
preferable to devise a metric that takes into account both the average velocity
at which the gesture is being drawn, and possibly the size of the gesture itself.
Both of these factors would affect the error measurements of any algorithm, when
measured in absolute pixels. Devising a more general error metric would make
comparisons between different methods much simpler and more meaningful.

In this paper, we compare our Bayesian method against dead reckoning,
which was used in the previous work but may not be the most suitable baseline.
Other general curve-fitting methods may provide a more realistic bottom line
for the effectiveness of our algorithm. Furthermore, a hybrid approach in which
dead reckoning or some other simple means is used when the Bayesian model
is unable to recognize the character with sufficient confidence may yield better
results in a realistic setting.

Another issue arises in dealing with characters that consist of more than a
single stroke, which as previously mentioned were omitted from the dataset used
in this paper. Accurate prediction was difficult for these characters, since the
model breaks down when the cursor can effectively ’teleport’ from one place to
another. Furthermore, there is no easy way to identify when a new stroke by the
user indicates the beginning of a new character, or the continuation of an old
one. The study by Gutwin, Dyck and Burkitt [7] uses only continuous characters
as gestures, and does not consider this problem. In the future, optical character
recognition (OCR) techniques may be examined address this shortcoming.

It was previously mentioned that the data used to build this network all came
from a single user. In general, for a gesture prediction program, it seems that it
would be the required procedure to have an individual and personalized model
for a given user. This is because cursor gestures, like hand-writing, are likely to be
highly individualized. As an example, consider the simple character of lower-case
‘c.” The user in this paper always draws their ¢’s counter-clockwise, starting from
the upper horn. However, there is no reason to assume that another user might not
start from the bottom horn and draw clockwise. This matter may well be worth
further investigation, but it seems likely that a model that averaged data from
both users would result in less predictive accuracy for either user individually.

A final issue to consider is how well this TAN-based method can be gen-
eralized. Can we go from predicting alphabetic characters to predicting general
cursor movement in a distributed groupware application? What other techniques
may be necessary in order to make this move? The question certainly does not
seem to be an easy one, but Bayesian methods provide a promising framework
for future investigation in this area.

A Bayesian Model to Smooth Telepointer Jitter 119

7 Conclusion

We provide a Bayesian network model to solve the problem of cursor prediction.
This method uses real data in order to learn accurate parameters of the model,
resulting in twice the accuracy of previously used methods in this field, such as
dead reckoning. The model is also capable of predicting alphabetic gestures being
drawn by the user in 84% of cases. We also propose a new error metric, Maximum
Spatial Displacement, to be used in conjunction with the Mean Maximum Error
metric, in order to more accurately compare solutions in this field.

Acknowledgements

The authors would like to sincerely thank Dr. Carl Gutwin for providing the
data used both to train and evaluate our proposed model. Both authors would
like to thank NSERC for support of this research.

References

1. J. Cheng and R. Greiner. Comparing bayesian network classifiers. UAI-99 - Pro-
ceedings of 15th Conference on Uncertainty in Artificial Intelligence, 1999.
2. J. Cheng and R. Greiner. Learning bayesian belief network classifiers: Algorithms
and system. Lectures Notes in Computer Science, 2001.
3. C. K. Chow and C. N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 1968.
4. N. Dempster, A. Laird and D. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, 1977.
5. D. Friedman, N. Geiger and M Goldszmidt. Bayesian network classifiers. Machine
Learning, 1997.
6. C. Gutwin and R. Penner. Improving interpretation of remote gestures with tele-
pointer traces. Proceedings of ACM CSCW, 2002.
7. J. Gutwin, C. Dyck and J. Burkitt. Using cursor prediction to smooth telepointer
jitter. To appear, the 2003 ACM Conference on Group Work, 2003.
8. D. Heckerman. A tutorial on learning with bayesian networks. Technical Report
MSR-TR-95-06. Microsoft Corporation, Redmon, USA, 1996b.
9. P. Krause. Learning probabilistic networks. http://www.auai.org/bayesUS
krause.ps.gz, 1998.
10. Norsys Netica. hitp://www.norsys.com.

A Comparative Study of Two Density-Based Spatial
Clustering Algorithms for Very Large Datasets

Xin Wang and Howard J. Hamilton

Department of Computer Science,
University of Regina,
Regina, SK, Canada S4S 0A2
{wangx, hamilton}@cs.uregina.ca

Abstract. Spatial clustering is an active research area in spatial data mining
with various methods reported. In this paper, we compare two density-based
methods, DBSCAN and DBRS. First, we briefly describe the methods and then
compare them from a theoretical view. Finally, we give an empirical
comparison of the algorithms.

1 Introduction

A spatial database system is a database system for the management of spatial data.
Rapid growth is occurring in the number and the size of spatial databases for
applications such as geo-marketing, traffic control, and environmental studies [3].
Spatial data mining, or knowledge discovery in spatial databases, refers to the
extraction from spatial databases of implicit knowledge, spatial relations, or other
patterns that are not explicitly stored [9].

Finding clusters in spatial data is an active research area, with recent results
reported on the effectiveness and scalability of algorithms [4][10][12][13]. Based on
the techniques adopted to define clusters, clustering algorithms can be categorized into
four broad categories [11], hierarchical, partitional, density-based, and grid-based.

Hierarchical clustering methods can be either agglomerative or divisive. An
agglomerative method starts with each point as a separate cluster, and successively
performs merging until a stopping criterion is met. A divisive method begins with all
points in a single cluster and performs splitting until a stopping criterion is met. The
result of a hierarchical clustering method is a tree of clusters called a dendogram.

Partitional clustering methods determine a partition of the points into clusters,
such that the points in a cluster are more similar to each other than to points in
different clusters. They start with some arbitrary initial clusters and iteratively
reallocate points to clusters until a stopping criterion is met. They tend to find clusters
with hyperspherical shapes.

Density-based clustering methods try to find clusters based on the density of points in
regions. Dense regions that are reachable from each other are merged to formed clusters.
Density-based clustering methods excel at finding clusters of arbitrary shapes.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 120—132, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Comparative Study of Two Density-Based Spatial Clustering Algorithms 121

Grid-based clustering methods quantize the clustering space into a finite number of
cells and then perform the required operations on the quantized space. Cells
containing more than a certain number of points are considered to be dense.
Contiguous dense cells are connected to form clusters.

Spatial clustering aims to group similar objects into the same group based on
considering both spatial and non-spatial attributes of the object and a regular
clustering algorithm can be modified to account for the special nature of spatial data
to give a spatial clustering algorithm [11].

In this paper, we compare two spatial clustering algorithms, DBSCAN and DBRS,
theoretically and empirically. Both are density-based spatial clustering algorithms, but
they each perform best on particular types of datasets.

The paper is organized as follows. In Section 2, we briefly discuss the two
algorithms. In Section 3, we compare DBSCAN and DBRS from a theoretical
viewpoint. Section 4 presents an empirical evaluation of the effectiveness of
DBSCAN and DBRS. Section 5 presents our conclusions.

2 Algorithms

2.1 DBSCAN

DBSCAN was the first density-based spatial clustering method proposed [4]. To
define a new cluster or to extend an existing cluster, a neighborhood around a point of
a given radius (Eps) must contain at least a minimum number of points (MinPts), the
minimum density for the neighborhood.

Figure 1 gives the DBSCAN algorithm. DBSCAN starts from an arbitrary point g.
It begins by performing a region query, which finds the neighborhood of point g. If
the neighborhood is sparsely populated, i.e., it contains fewer than MinPts points, then
point ¢ is labeled as noise. Otherwise, a cluster is created and all points in ¢’s
neighborhood are placed in this cluster. Then the neighborhood of each of ¢’s
neighbors is examined to see if it can be added to the cluster. If so, the process is
repeated for every point in this neighborhood, and so on. If a cluster cannot be
expanded further, DBSCAN chooses another arbitrary unlabelled point and repeats
the process. This procedure is iterated until all points in the dataset have been placed
in clusters or labeled as noise. For a dataset containing n points, n region queries are
required.

Given a dataset D, a distance function dist, and parameters Eps and MinPts, the
following definitions (adapted from [4]) are used to specify DBSCAN.

Definition 1. The Eps-neighborhood (or neighborhood) of a point p, denoted by
Npps(p), is defined by N, (p) = {qe D | dist(p,q) < Eps}.

Definition 2. A point p is directly density-reachable from a point g if (1) pe Ng,(q)
and (2) INg,(q)l = MinPts.

Definition 3. A point p is density-reachable from a point ¢ if there is a chain of
points py,...,p,, p1=q, p,=p such that p;,, is directly density-reachable from p,for 1 <i
<n-1.

122 X. Wang and H.J. Hamilton

Definition 4. A point p is density-connected to a point g if there is a point o such that
both p and ¢ are density-reachable from o.

Definition 5. A density-based cluster C is a non-empty subset of D satisfying the
following conditions: (1) Vp, g: if pe C and ¢ is density-reachable from p, then g€ C;
(2) Vp, qe C: p is density-connected to g.

Algorithm DBSCAN (SetOfPoints, Eps, MinPts)
ClusterId = nextId(NOISE) ;
For i = 1 to SetOfPoints.size

{ Point = SetOfPoints.getl[i];

If (Point.ClId == Unclassified)
If ExpandCluster (SetOfPoints, Point, ClusterId, Eps, MinPts)
ClusterId = nextId(ClusterId);
}

ExpandCluster (SetOfPoints, Point, ClId, Eps, MinPts) : Boolean
Seeds = SetOfPoints.regionQuery (Point, Eps);
If (Seeds.size < MinPts)
SetOfPoint.changeClId(Point, NOISE) ;
Return False;
Else
{ SetOfPoints.changeClIds (Seeds, C1lId);
Seeds.delete(Point) ;
While (Seeds != Empty)
{ CurrentP = Seeds.first();
result = SetOfPoints.regionQuery(currentP, Eps);
If (result.size >= MinPts)
{ For i =1 to result.size
{ resultP = result.get[i];
If resultP.ClId In {UNCLASSIFIED, NOISE}
{ If (resultP.clId == UNCLASSIFIED)
Seeds.append (resultP);
SetOfPoints.changeClId(resultP, ClId);

}
}
Seeds.delete(currentP) ;

}

Return True;

Fig. 1. DBSCAN Algorithm (Adapted from [4])

2.2 DBRS

DBRS is a density-based spatial clustering algorithm [13]. Given a dataset D, a
symmetric distance function dist, parameters Eps and MinPts, and a property prop
defined with respect to a non-spatial attribute, the following definitions are used to
specify DBRS. (Extension to multiple non-spatial attributes is straightforward.)

Definition 6. The matching neighborhood of a point p, denoted by N’g,(p), is
defined as N’g,s(p) = {qe D | dist(p,q)< Eps and p.prop = g.prop}.

A Comparative Study of Two Density-Based Spatial Clustering Algorithms 123

DBRS handles non-spatial attributes in the neighbor finding function and uses a
minimum purity threshold, called MinPur, to control the purity (or consistency) of the
neighborhood. A core point is a point whose matching neighborhood is dense enough,
i.e., it has at least MinPts points and over MinPur percent of its neighbors are
matching neighbors. A border point is a neighbor of a core point that is not a core
point itself. Points other than core and border points are noise.

Definition 7. A point p and a point ¢ are directly purity-density-reachable from each
other if (1) pe N'g,(q), IN'g,(q)! = MinPts and IN'g,(q)l / INg,(q)! = MinPur or (2)
g€ N'ep(p), IN'Eys(p)l = MinPts and IN"g,((p)! / INg,(p)l = MinPur.

Directly purity-density-reachable is a reflexive relation. It is symmetric for two
core points as well as for one core point and one border point, but it is not symmetric
for two border points. Directly density-reachable used in DBSCAN is only symmetric
for two core points, but not symmetric for one core point and one border point, or two
border points.

Definition 8. A point p and a point g are purity-density-reachable (PD-reachable)
from each other, denoted by PD(p, g), if there is a chain of points py,...,p,, P1=¢, P.=P
such that p;,, is directly purity-density-reachable from p; for 1 < i < n-1.

Algorithm DBRS (D, Eps, MinPts, MinPur)
ClusterList = Empty;
while (!D.isClassified())
{ Select one unclassified point g from D;
gseeds = D.matchingNeighbors (g, Eps):;
if ((\qseeds\ < MinPts) or (gseeds.pur < MinPur))
g.clusterID = -1; /*g is noise or a border point */
else
{ 1isFirstMerge = True;
C; = ClusterList.firstCluster;
/* compare gseeds to all existing clusters */
while (C; != Empty)
{ if (hasIntersection(gseeds, C;))
if (isFirstMerge)
{ newC; = C;.merge(gseeds) ;
isFirstMerge = False; }
else
{ newC; = newC;.merge (C;) ;
ClusterList.deleteCluster (C);}
C; = ClusterList.nextCluster;
} // while != Empty
/*No intersection with any existing cluster */
if (isFirstMerge)
{ Create a new cluster Cj from gseeds;
ClusterList = ClusterList.addCluster(Cj);
} //if isFirstMerge
} //else
} // while !D.isClassified

Fig. 2. DBRS Algorithm (Adapted from [13])

Definition 9. A purity-density-based cluster C is a non-empty subset of D satisfying
the following condition: Vp, ge D: if pe C and PD(p, g) holds, then ge C.

124 X. Wang and H.J. Hamilton

The intuition behind DBRS is that a cluster can be viewed as a minimal number of
core points (called skeletal points) and their neighborhoods. In a dense cluster, a
neighborhood may have far more than MinPts points, but examining the
neighborhoods of these points in detail is not worthwhile, because we already know
that these points are part of a cluster. If an unclassified point in a neighbor’s
neighborhood should be part of this cluster, we are very likely to discover this later
when we select it or one of its other unclassified neighbors.

To find a cluster, it is sufficient to perform region queries on the skeletal points.
However, identifying skeletal points is NP-complete (see Section 3.2). Instead, we
can randomly select sample points, find their neighborhoods, and merge their
neighborhoods if they intersect. If enough samples are taken, we can find a close
approximation to the cluster without checking every point. The sample points may not
be the skeletal points, but the number of region queries can be significantly fewer than
for DBSCAN for datasets with widely varying densities.

Figure 2 represents the DBRS algorithm.

3 Theoretical Comparison of DBRS and DBSCAN

In this section, we compare DBRS and DBSCAN from two theoretical viewpoints,
including the neighborhood graphs they construct and the heuristics they provide for
the skeletal points decision problem. To simplify the discussion, we assume all points
have the same property.

3.1 Comparison from the Viewpoint of Neighborhood Graphs

First, three definitions are introduced. Then we describe the neighborhood graphs
relevant to DBSCAN and DBRS.

Definition 10. The rneighborhood graph for a spatial relation neighbor is a graph G =
(V, E) with a set of vertices V and a set of edges E such that each vertex corresponds
to a point and two vertices v, and v, are connected iff neighbor(v,, v,) holds [3].
Depending on the neighbor relation, a neighborhood graph can be directed or
undirected.

Definition 11. A neighborhood (sub-)graph is connected iff for any pair of vertices in
the (sub-) graph there is an undirected path joining the vertices.

Definition 12. A directed neighborhood (sub-)graph is strongly connected iff for any
two nodes p, g with neighbor(p, g) holding, there is a directed path from p to g.

Lemma 1. A density-based cluster corresponds to a connected neighborhood sub-
graph with density-reachable used as the neighbor relation.

From Lemma 1, given n points, the clustering process of DBSCAN can be viewed
abstractly as constructing neighborhood graphs. Each time a core point is found, the
algorithm finds the directly density-reachable relation between the core point and
each of its neighbors. The directly density-reachable relation holding for the two
points can be viewed as the directed edge between the two corresponding vertices in
the neighborhood graph. Each cluster in the dataset is constructed as a connected

A Comparative Study of Two Density-Based Spatial Clustering Algorithms 125

neighborhood sub-graph. Without considering noise, if a dataset has k clusters, then
its corresponding neighborhood graph will have k connected sub-graphs.

For example, suppose the nine points in Figure 3(a) are in one cluster. We assume
MinPts is 3. DBSCAN is applied with Point 1 arbitrarily selected as the initial point.
The region query for Point 1 finds that Points 2, 3, 4, 5 and 6 are Point 1’s neighbors.
These points are shown inside the circle centered on Point 1 in Figure 3(a). So edges
from 1 to its neighbors are inserted in the neighborhood graph. Points 2, 3, 4, 5 and 6
are organized in a list and checked for neighbors one by one, and so on for their
neighbors. When DBSCAN terminates, the neighborhood graph is connected, as
shown in Figure 3(b).

Lemma 2. If the density-reachable relation is the neighbor relation, DBSCAN’s
clustering process corresponds to constructing the strongly connected neighborhood
graph.

In Figure 3(b), for any two points if one point is density-reachable from the other,
then a directed path connects them. So, Figure 3(b) shows a strongly connected
neighborhood graph.

Lemma 3. A purity-density-based cluster correspond to a connected neighborhood
graph with PD-reachable used as the neighbor relation.

2 6 2 le 1
3 5
3 5
9 ! 7 !
8 (c1) (c2)
(b) (©

Fig. 3. (a) Example Cluster; (b) Strongly Connected Neighborhood Graph; (c) Connected
Neighborhood Graph

Since PD-reachable is a symmetric relation, the neighborhood graph corresponding
to DBRS is an undirected graph. Suppose we apply DBRS to the points in Figure 3(a),
with Point 2 arbitrarily picked as the initial point. After calling the
matchingNeighbors function, DBRS finds that Points 1, 3, and 9 are Point 2’s
neighbors and generates the neighborhood sub-graph shown in Figure 3(cl). 1-2-3-9
becomes the first sub-cluster. Then DBRS randomly picks Point 6 and generates the
neighborhood sub-graph shown in Figure 3(c2) for sub-cluster 1-5-6-7. This
subcluster intersects existing sub-cluster 1-2-3-9 at Point 1. After merging, the sub-
cluster includes 1-2-3-5-6-7-9. Next, suppose DBRS picks Point 4. 1-3-4-5-8 is
generated and merged into the existing cluster. The final neighborhood graph is a
connected neighborhood graph, as shown in Figure 3(c3).

126 X. Wang and H.J. Hamilton

In the worst case, i.e., all points are noise points, the costs of constructing the two
types of neighborhood graphs are the same, because no directed or undirected edges
are generated. Otherwise, constructing a strongly connected neighborhood graph (as
DBSCAN does) is more expensive than constructing a connected neighborhood graph
(as DBRS does). In the simplest case, two core points are directly density-reachable
from each other. In a strongly connected neighborhood graph with directly density-
reachable as the neighbor relation, we need to check both nodes to find two directed
edges to connect them. In the other words, with DBSCAN, for any two directly
density-reachable core points, two directed edges are required to connect them. In the
connected neighborhood graph generated with PD-reachable as the neighbor relation,
if the two core nodes are directly PD-reachable from each other, we only need to
check one of them because after checking one, the undirected edge connecting them is
generated. In a strongly connected neighborhood graph, the number of directed edges
required is greater than or equal to the number of undirected edges required in the
corresponding connected neighborhood graph. Thus, constructing a strongly
connected neighborhood graph requires making region queries for more points than
constructing a connected neighborhood graph.

For the clustering process, regardless of whether the connectivity is directed or
undirected, all connected points should belong to the same cluster. It is irrelevant
whether two points are density reachable via a directed neighborhood path or via an
undirected path. So, in most of the cases, DBRS can obtain the clusters more cheaply
than DBSCAN.

3.2 Comparison from the Viewpoint of Skeletal Points

Definition 13. Given a cluster C, a set of S ¢ C is a set of skeletal points S for C if
and only if

(1) = {x1 [JN'ms(x) = Cand IN'g,,(x)| 2 MinP1s} and

xe$§

(2) there is no other set of points §' c C that satisfies condition (1) but IS'l < ISI.

Informally, the skeletal points are a minimal set of core points, whose
neighborhoods cover the cluster. Every point in a cluster is a skeletal point or a
neighbor of a skeletal point. Therefore, to find a cluster, it is sufficient to perform
region queries on the skeletal points. Although skeletal points are defined for a
cluster, the skeletal points for a dataset can be viewed as a union of the skeletal points
for each cluster in the dataset.

The skeletal points can also be used to represent a clustering result, which saves
space. Additionally, when a new point is added to a cluster, we can avoid running the
cluster algorithm again if the new point belongs to the neighborhood of a skeletal
point.

A relevant question to address concerns whether it is possible to identify the
skeletal points for a cluster in polynomial time.

Definition 14. Given a cluster C, the skeletal points decision problem is to determine
whether there is a set of skeleton points S for C of size J or less.

Theorem. The Skeletal Points Decision Problem is NP-complete.

A Comparative Study of Two Density-Based Spatial Clustering Algorithms 127

Proof Sketch. Proof of the theorem is based on transforming the skeletal points
decision problem for a cluster to the minimal cover decision problem for its
corresponding neighborhood graph. The detailed proof is shown in [14].

First, given a neighborhood graph, we can simply guess a cover with size J or less
for the neighborhood graph and check in polynomial time whether the cover and the
neighborhoods of every point in the cover include all nodes of the neighborhood
graph. So the problem belongs to NP.

Then, we reduce a known NP-complete problem, the dominating set decision
problem [5], to the minimal cover decision problem. The dominating set decision
problem is defined for a general graph, but the minimum cover decision problem is
defined for a neighborhood graph. We transform any general graph to a neighborhood
graph with MinPts = 3, that is, where one vertex of every edge has a degree of at least
3. Vertices with degrees of 1 or 2 in the general graph are added to the neighborhood
graph along with dummy vertices sufficient to ensure MinPts = 3. All other vertices
and edges are transferred directly to the neighborhood graph. This transformation can
be done in polynomial time.

Since the skeletal point belongs to NP and one subproblem (when MinPts > 3) can
be reduced from a known NP-complete problem, the skeletal point decision problem
is NP-complete. ¢

From the above theorem, we can conclude that no algorithm is known that obtains
skeletal points in polynomial time. The next question is whether a heuristic method
can find an approximate solution for the skeletal points decision problem in
polynomial time. As explained below, DBSCAN and DBRS can be viewed as two
kinds of heuristic methods for the skeletal points decision problem, where given the
points of a single cluster, we need to select the skeletal points.

DBSCAN can be viewed as a heuristic method that uses a depth-first local
spanning search. It randomly selects the first point, saying p, finds its neighborhood,
and checks whether p and its neighbors cover the whole cluster. If not, it picks a
neighbor of p, called it g, adds it to the set, and checks its neighbors. If ¢ is a border
point, the next selected point is another neighbor of p. If g is a core point, the next
point will be one of ¢’s neighbors. The process continues until the whole cluster has
been covered. The selected points may not be skeletal points, but together they form a
cover for the corresponding neighborhood graph.

DBRS can be viewed as a heuristic method that uses a random search. The
algorithm randomly selects one point, finds its neighborhood, and checks whether the
selected point and its neighbors cover the whole cluster. If not, another point is
randomly selected and added to the set. After checking for overlap and merging as
necessary, the algorithm checks whether the two points and their neighbors cover the
whole cluster. If not, the process is repeated until the whole cluster has been covered.
As with DBSCAN, the selected points may not be skeletal points, but together they
form a cover for the corresponding neighborhood graph.

4 Performance Evaluation

In this section, we give a series of results from applying the two clustering methods to
cluster both synthetic and real datasets. Each synthetic dataset includes x, y

128 X. Wang and H.J. Hamilton

coordinates and one non-spatial property for the attributes and 2-10 clusters. The
clusters in the datasets have different shapes and densities. Each result reported in a
table or graph in this section represents the average of 10 runs. All experiments were
run on a 500MHz PC with 256M memory.

Since the original DBSCAN implementation, which is based on R*-trees, cannot
handle duplicate points in datasets and also mistakenly removes some points from
large datasets, we re-implemented DBSCAN using SR-trees, and called the result
DBSCAN*. DBRS is implemented using SR-trees.

4.1 Scalability

Figure 4 shows the scalability of DBSCAN* and DBRS on synthetic datasets when
the Eps is 5, MinPts is 10 and MinPur is 0.98 for DBRS.

3500

3000

5 2500
<
o
O 2000
o}
@
o 1500
£
i: 1000

500

0
25k 50k 75k 100k 125k 150k 175k 200k 225k
Size of Datasets
(a) Running Time in Seconds
250000
—— DBSCAN*

8 200000 T
=
)
=]
O 150000
c
K]
& 100000
o
Y
o
* 50000

25k 50k 75k 100k 125k 150k 175k 200k 225k
Size of Datasets

(b) Number of Region Queries

Fig. 4. Scalability of DBSCAN* and DBRS

A Comparative Study of Two Density-Based Spatial Clustering Algorithms 129

Figure 4 (a) shows that the running time for DBSCAN* ranges from 268 seconds
for 25 000 points to 3038 seconds for 225 000 points. In Figure 4 (b), the number of
region queries of DBSCAN* is almost equal to the size of the dataset, ranging from
24348 queries for 25 000 points to 224870 queries for 225 000 points. The running
time for DBRS increases with the size of the datasets in an almost linear fashion,
going from 17 seconds in the case of 25 000 points to 209 seconds for a dataset with
225 000 points. The numbers of region queries for different datasets increases from
3167 times for a 25000 point dataset to 33919 for a 225 000 point dataset.

4.2 Scalability with Respect to the Number of Noise Points

The most time-consuming part of density-based algorithms is the region query
operation. Since CLARANS is a partitional clustering algorithm, it does not have the
region query operation. In Sections 4.3 and 4.4, we will study the region query
operation for the two density-based algorithms, DBSCAN and DBRS. First we show
the number of region queries with respect to the percentage of noise points.

Figure 5 shows the number of region queries for various percentages of noise for
dataset sizes ranging from 10 000 to 100 000 points for the two algorithms. For
DBSCAN, it makes the region query for every point in the dataset. The number of
region queries only depends on the size of the dataset. Thus, the number of region
queries is equal to the number of points in the datasets, which is same as the number
of region queries of DBRS with 100% of noise. For DBRS, as the percentage of noise
increases, the number of region queries needed for DBRS increases. For example, for
100 000 points, when a dataset has 0% noise, it takes approximately 3000 region
queries to finish the clustering, but when the percentage of noise reaches 100%, it
takes exactly 100 000 region queries. For every dataset, when the percentage of noise
reaches 100%, DBRS requires the same number of region queries as DBSCAN*. In
every case, this number is equal to the number of points in the dataset.

120000 —e— 0% noise(DBRS)
» —B—10% noise(DBRS)
2 100000 | —4— 50% noise(DBRS)
g —%—90% noise(DBRS)
Cc' 80000 | —¥— 100% noise(DBRS) & DBSCAN
S
EJ 60000 -
5
5 40000 -
<}
§
3 20000 -

0 - T * T 4'

0 20000 40000 60000 80000 100000 120000
Number of Points

Fig. 5. The Number of Region Queries for Datasets with Various Percentages of Noise Vs.
Data Sizes

130 X. Wang and H.J. Hamilton

4.3 Eps and Number of Region Queries

The second factor affecting the number of region queries for the two density-based
methods is the value selected for the Eps parameter. Figure 6 shows the number of
region queries required for a dataset of 10 000 points with clusters of varying
densities. With DBSCAN, the number of region queries does not change as Eps
increases, while with DBRS, it decreases. For our data, increasing Eps is equivalent to
reducing the density of the overall cluster. Thus, for higher-density clusters, DBRS
can achieve better performance than DBSCAN because for DBRS denser clusters take
fewer region queries to find than for DBSCAN.

12000
210000 {H—= = = = = = =N
@
=
& 8000 H
£ —e—DBRS
'g; 6000 —=— DBSCAN*|
B 4000 -
[
Q
§ 2000 M—o—o
=

O T T T T T T T

25 3 4 %ad(lsus7 8 9 10

Fig. 6. Eps Vs. Number of Region Queries (10k Dataset)

4.4 Real Dataset

The two algorithms were also tested on the real datasets. The dataset is from the
North American Breeding Bird Survey (BBS). The BBS is a long-term, large-scale,
international avian monitoring program initiated in 1966 to track the status and trends
of North American bird populations [7]. Each year during the height of the avian
breeding season, which is June for most of the U.S. and Canada, participants skilled
in avian identification collect bird population data along roadside survey routes. Each
survey route is 24.5 miles long with stops at 0.5-mile intervals. Over 4100 survey
routes are located across the continental U.S. and Canada. Among the BBS data, we
picked data for the Canada goose to test DBRS. There are 2091 survey routes
reporting Canada goose populations. We set Eps to 1 and MinPts to 10 for the two
density-based methods. Figure 7 shows the clustering result of DBRS. DBSCAN*
made 2066 region queries, had a running time of 12 seconds, and found 5 clusters.
DBRS made 892 region queries, had a running time of 3 seconds, and found 6
clusters. The biggest cluster is in eastern North American.

A Comparative Study of Two Density-Based Spatial Clustering Algorithms 131

Fig. 7. Canada Goose Data (in DBRS) (in color)

The reason that DBRS has more clusters is because it missed joining certain
clusters. For example, for the points shown in Figure 8, all points are close together
and should be placed in the same cluster. However, if the algorithm picks Point 1 and
then Point 5, all points will be clustered, and no unclustered point will remain that can
be picked to merge the two sub-graphs.

5 Conclusion

Clustering spatial data has been extensively studied in the knowledge discovery
literature. In this paper, we compare two spatial clustering methods. DBSCAN gives
extremely good results and is efficient in many datasets. However, if a dataset has
clusters of widely varying densities, DBSCAN is not able to handle it efficiently. If non-
spatial attributes play a role in determining the desired clustering result, DBSCAN is not
appropriate, because it does not consider non-spatial attributes in the dataset.

DBRS aims to reduce the running time for datasets with varying densities. It scales
well on high-density clusters. As well, DBRS can deal with a property related to non-
spatial attribute(s), by means of a purity threshold, when finding the matching
neighborhood. One limitation of the algorithm is that it sometimes may fail to
combine some small clusters.

Fig. 8. A Difficult Case

References

[1] Beckmann, N., Kriegel, H-P., Schneider, R., and Seeger, B.: The R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles. SIGMOD Record, 19(2) (1990)
322-331

132

(2]
(3]
(4]

(5]
(6]
(7]
(8]

(9]

(10]
(1]
[12]
(13]

(14]

X. Wang and H.J. Hamilton

Cai, Y., Cercone, N., and Han, J.: Learning In Relational Databases: An Attribute-
Oriented Approach. Computational Intelligence 7(1991) 119-132

Ester, M., Kriegel, H-P., and Sander, J.: Spatial Data Mining: A Database Approach. In:
Proc. 5th Int'l Symp. on Large Spatial Databases, Berlin (1997) 48-66

Ester, M., Kriegel, H., Sander, J., and Xu, X.: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In: Proc. of 2nd KDD,
Portland (1996) 226-231

Garey, M.R. and Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman (1979)
http://www.dmtispatial.com/geocoding_software.html
http://www.mp2-pwrc.usgs.gov/bbs/about/

Katayama, N. and Satoh, S.: The SR-tree: An Index Structure for High-Dimensional
Nearest Neighbor Queries. SIGMOD Record 26(2) (1997) 369-380

Koperski, K., and Han, J.: Discovery of Spatial Association Rules in Geographic
Information Databases. In: Proc. 4th Int'l Symp. on Large Spatial Databases, Portland,
Maine (1995) 47-66

Ng, R. and Han, J.: Efficient and Effective Clustering Method for Spatial Data Mining.
In: Proc. of Int'l Conf. on Very Large Data Bases, Santiago, Chile (1994) 144-155
Shekhar, S. and Chawla, S.: Spatial Databases: A Tour, Prentice Hall (2003)

Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for
Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces.
IEEE Transactions on Knowledge and Data Engineering, 16(10) (2004) 1169-1184
Wang X. and Hamilton, H. J.: DBRS: A Density-Based Spatial Clustering Method with
Random Sampling. In: Proc. of the 7th PAKDD, Seoul, Korea (2003) 563 — 575

Wang, X., and Hamilton, H.: DBRS: A Density-Based Spatial Clustering Method with
Random Sampling. Technical Report, University of Regina (2003)

A Markov Model for Inventory Level
Optimization in Supply-Chain Management

Scott Buffett

Institute for Information Technology — e-Business,
National Research Council Canada
46 Dineen Drive, Fredericton, New Brunswick, Canada E3B 9W4
Scott.Buffett@nrc.gc.ca

Abstract. We propose a technique for use in supply-chain management
that assists the decision-making process for purchases of direct goods.
Based on projections for future prices and demand, requests-for-quotes
are constructed and quotes are accepted that optimize the level of in-
ventory each day, while minimizing total cost. The problem is modeled
as a Markov decision process (MDP), which allows for the computation
of the utility of actions to be based on the utilities of consequential fu-
ture states. Dynamic programming is then used to determine the optimal
quote requests and accepts at each state in the MDP. The model is then
used to formalize the subproblem of determining optimal request quan-
tities, yielding a technique that is shown experimentally to outperform a
standard technique from the literature. The implementation of our entry
in the Trading Agent Competition-Supply Chain Management game is
also discussed.

Keywords: supply-chain management, Markov decision process, dy-
namic programming, purchasing.

1 Introduction

With the dramatic increase in the use of the Internet for supply chain-related
activities, there is a growing need for services that can analyze current and
future purchase possibilities, as well as current and future demand levels, and
determine efficient and economical strategies for the procurement of direct goods.
Such solutions must take into account the current quotes offered by suppliers,
likely future prices, projected demand and storage costs in order to make effective
decisions on when and from whom to make purchases. Based on demand trends
and projections, there is typically a target inventory level that a business hopes
to maintain. This level is high enough to be able to meet fluctuations in demand,
yet low enough that unnecessary storage costs are minimized (see Shapiro [13]
for example). The focus of this paper is to provide an algorithm for purchase
decision-making that strives to keep inventory close to its optimal level, while
minimizing total cost.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 133144, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

134 S. Buffett

In a perfect world, the best strategy for keeping inventory as close to the
optimal level as possible would be to delay ordering to the last moment. That is,
if demand trends indicate that a new shipment will be needed on some particular
day, it would be best to delay ordering as long as possible so that the quantity
needed can be assessed with the most certainty. An accurate estimate of the
optimal quantity is critical since an inventory shortage may result in lost sales,
while excessive inventory could result in unnecessary storage costs. Because of
the variance in demand, the quantity needed a few days from now can usually be
more accurately assessed than the quantity needed several days from now. Thus
by delaying ordering the expected utility of future demand levels is increased.
On the other hand, one may want to order earlier if current prices are low, if
there will be more selection (i.e. many quotes from which to choose), or simply
to ensure timely delivery. Thus there can be incentive to bid both early and late.

In this paper, we propose a decision-theoretic algorithm that advises the
buyer when and from whom to buy by looking at possible future decisions. The
buyer is advised to take an action if and only if there is no present or future
alternative that would yield greater overall expected utility. We consider the
request-for-quote (RFQ) model where the buyer requests quotes from suppliers
by specifying the quantity needed and the desired delivery date, receives quotes
a short time after which specify the price and quantity that can be delivered
by the specified date (if not the entire order), and has a fixed period of time
to decide whether or not to accept each quote. Factors that are of concern in-
clude the projected demand for each day (or whatever time period granularity
is desired), current and projected sale prices each day for each supplier, storage
costs, and RFQ costs. While there might not be direct costs associated with re-
questing quotes, indirect costs such as the time taken to compute optimal RFQs,
as well as the possibility of being neglected by suppliers if we repeatedly fail to
respond to their quotes, must be considered. To compute optimal decisions, we
model the problem as a Markov decision process (MDP) [12] and use dynamic
programming [3,9] to determine the optimal action at each decision point. Ac-
tions include submitting RFQs to the various suppliers and accepting/rejecting
quotes. With this model, the value (i.e. expected utility) of future consequential
decisions can be taken into account when determining the value of choices at
current decisions. Based on this model, the subproblem of determining optimal
quantities to request in an RFQ is formalized and results are presented.

The new Trading Agent Competition-Supply Chain Management game (TAC-
SCM) [1,2] now provides a vehicle for testing various techniques related to
supply-chain management in a competitive environment. While the theory in
this paper deals with supply chain management in general, we briefly discuss
how the techniques can be implemented for our entry in the competition, NaRC.

The paper is organized as follows. In section 2 we give a formal description of
the problem. In section 3, we formulate the problem as an MDP and define the
dynamic programming model. The subproblem of determining optimal request
quantities is presented in section 4, and results of a few experiments are given. In
section 5 we discuss the TAC-SCM game and describe how the research discussed
in this paper fits. Finally, in section 6 we offer a few conclusions and outline plans
for future work.

A Markov Model for Inventory Level Optimization 135

2 Problem Formalization

We consider the model where the buyer wants to purchase multiple units of
a single good for resale (perhaps first being assembled with other items). Let
SUP = {supy,...,supy,} be the set of suppliers from whom the good can be
obtained. Let d = 0,1,...n denote the days over the procurement period (e.g.
the next fiscal year, etc.). These could instead be hours, weeks, etc., depending
on the desired granularity of time. Also, let k¥ € Z be an integer denoting the
inventory on a particular day d, and let h be the holding cost per unit per day.
That is, if &' units are left over at the end of the day, they are held at a cost of
hk'. Also, let uk(k, d) be the utility of holding k units at the start of day d. This
is a function of the expected income for d, taking into consideration the expected
demand on d and the expected cost of holding the leftover inventory at the end
of the day. This function will be maximized with higher £ during high-demand
periods and lower k over low-demand periods.

Our research is placed in the context of the request-for-quote (RFQ) pro-
curement model. At any time, the buyer can send an RFQ to various suppliers.
A subset of those suppliers will then respond to the request by offering a quote
which specifies the terms of the offer. Let each RFQ be a tuple (sup;,q, dger)
specifying the supplier sup;, the quantity ¢ needed and the day dg.; on which to
deliver. Let each quote be a tuple (sup;,p, qdel, dder, dr) specifying the supplier
sup;, the price p of the order, the quantity gge; that can be delivered on dge; (in
case the entire order cannot be filled by that day), and the day d,. on which the
quoted price will be rescinded if the buyer has not yet responded. Let ¢ be the
small cost associated with each RFQ. Payment for the order is assumed to be
made when the quote is accepted.

Also, for the purposes of projecting future outcomes, assume we have three
probability distribution functions that are used to predict future outcomes: the
demand distribution function, the supply distribution function and the price
distribution function. The demand distribution function df (d, q) takes a day d
and a quantity ¢ and returns the probability of selling ¢ units on d. The supply
distribution function sf(sup,d,d’,q) takes a supplier sup, days d and d’ and
a quantity ¢ and returns the probability that sup can (and will agree to) to
deliver ¢ units on day d’ if they were ordered on day d. We assume that if
the supplier does agree to this delivery, then all ¢ units will arrive on d’ with
certainty. The model could, however, be extended to allow for late deliveries by
using a probability measure over all possible d’. Finally, the price distribution
function pf(sup, d,d’, q,p) takes a supplier sup, days d and d’, a quantity ¢ and
a monetary amount p and returns the probability that sup will quote a price
of p for ¢ units ordered on d to be delivered on day d’. Each of these functions
can be constructed by examining market history, supplier history, or by using
statistical projection techniques.

The problem is to decide each day 1) which quotes that have already been
obtained to accept, and 2) whether to request new quotes, and if so, how the
RFQ’s should be formulated. That is, we must decide on which days we will likely
need new shipments, and also what the optimal quantity is. The goal is to make

136 S. Buffett

decisions that maximize the overall inventory utility (i.e. keep the inventory close
to optimal each day), while minimizing the total amount spent on orders over
the duration of the purchase period.

3 Modeling the Problem as a Markov Decision Process

In this paper we capitalize on the idea of examining exactly what information
will be known at future choice points when determining the optimal actions. For
example, consider two suppliers sup; and sups. If we choose to request a quote
for k£ units from each of them on some future day d, at the time we receive the
quotes we will know the exact price being offered by each supplier. Based on
this knowledge, plus the knowledge of the expected utility of not ordering at
all, we can choose either to accept the cheaper quote or pass altogether. While
the expected utility of any course of action on day d may not be as high as the
expected utility of any action at the current decision point (i.e. current quotes),
it is possible that the overall expected utility of waiting until day d to take action
is higher. This is due to the fact that more information will be known on d than
is known now, which will allow the decision-maker to make a more informed
decision, thus increasing expected utility.

To determine the optimal quotes to accept and RFQs to submit, the problem
is modeled as a Markov decision process (MDP) [12]. An MDP is a mathematical
tool used to aid decision-making in complex systems. In an MDP, the possible
states S that the decision-making agent can occupy are defined, as well as the set
of actions A that the agent can take in each state. If action a is deterministic in
state s, then the transition function maps (s, a) to a new state s’. Otherwise the
action is stochastic, and the transition function maps (s,a) to states according
to a probability function Pr, where Pr(s’|s,a) is the probability of occupying
s’ given that a is performed in s. Also, some or all of the states may have
an associated reward. The purpose of modeling a problem as an MDP is to
determine a policy function 7 : S — A, which takes any state and specifies the
action such that the expected sum of the sequence of rewards is maximized.
Dynamic programming is used to determine the optimal action in each state.

3.1 States
Each state s in the MDP for our problem is a tuple (I, Q, C,d, k) where

— I is the set of incoming orders. That is, I contains the orders known to be
coming in on the day specified in s or on some future day. Each i € I is a
tuple (g, d) where d is the day of the shipment and ¢ is the quantity.

— (@ is the set of currently open quotes.

— (' is the total amount spent on purchases thus far.

— d is the day.

— k is the current inventory.

A Markov Model for Inventory Level Optimization 137

3.2 Actions

Actions consist of accepting quotes and sending RFQs. Since quote rescind times
are always known (i.e. quotes are not pulled without warning), we assume that
decisions on whether or not to accept a quote are delayed to the last possi-
ble moment, to allow decisions to be as informed as possible. Thus quotes are
only accepted the day before they are to be rescinded. We also assume that
at most one RFQ is sent to each supplier each day. This assumption is put
in place merely to reduce the number of possible actions at each state, and
could easily be lifted if desired. Let req(rfq) represent the act of submitting
a request-for-quote rfg, and let acc(qu) represent the act of accepting quote
qu. For a state s with quotes Q, and day ds, let {req({sup,q,dge)) | sup €
SUP, ¢min < ¢ < @maz,ds < dge; < dp} be the set possible quote requests,
where ¢pin and @mee are the minimum and maximum quantities that can be
ordered, respectively, and d,, is the final day of the procurement period. Also let
the set {aCC(<S,p, q, ddeladr>) | <SvpaQ>ddel7dr> € Qsadr =ds + 1} be the set of
possible quote acceptances. The set A of actions is then the union of these two
sets. Any subset A’ of the actions in A for a state s can be performed with the
restriction that at most one RFQ is submitted to each supplier. Let the set of
these valid subsets for a state s be denoted by As,.

3.3 Rewards

The value of a state in an MDP is equal to the reward for that state plus the
expected rewards of future states. The optimal action at each state is then the
one defined to yield the highest expected value. Our technique aims to optimize
the utility of the inventory held each day, and minimize the total cost over the
entire purchase period. Thus there are two types of rewards given in the MDP.
To assess the reward to be assigned to each state, two utility functions are used:
the inventory utility function uk and the cost utility function uc.

The inventory utility function uk : Z x Z — R takes an inventory level k and
a day d and returns the utility of holding k£ units on d. This utility is determined
by measuring the ability of meeting the expected demand for day d with k
units against the expected costs associated with holding the leftover units. For
example, if &’ is the optimal number of units to hold on d (thus maximizing uk
for d), then for k < k' inventory may not be high enough to meet the demand
so money may be lost, and for k > k' inventory may be too high and too costly
to be worth holding.

As an example, let the demand function be such that either 1 or 2 units will
be sold, each with 0.5 probability, on day d. Also let the sale price of each unit be
10, and the inventory holding cost be h = 1/unit/day. The expected net income
(revenue - minus inventory cost) E(x,d) for x units on day d is 0 if x = 0 (since
no units are sold and no units are held), 10 if = 1 (the one item will be sold
with certainty, since the demand function says that 1 or 2 units will be sold
today), and 16.5 — z if > 2 (taking into account losses incurred by possible
leftover inventory). The utility function uk is then a function of E(x,d) (perhaps
concave to indicate aversion to risk).

138 S. Buffett

The cost utility function uc : Z — R is a monotonically decreasing function
that takes a cost ¢ and returns the utility of spending c. It is typically a concave
function reflecting the risk-averseness of the decision-maker.

For each state s, the inventory reward is given. That is, if £ is the inventory
for s and d is the day, then the inventory reward for s is uk(k,d). For each
terminal state a cost reward is given, which is the utility uc(C) of spending a
total of C' over the duration of the procurement period.

The value of each state is then a function of the expected cost reward and the
expected inventory rewards for the remainder of the procurement period, given
that the state is reached.

3.4 The Transition Function

The transition function specifies which states can follow from an action in a
given state in the MDP. Let T'(s,a) be this function which takes a state s € S
and action a € A,, and returns the set of states that can be occupied as a
result of performing a in s. Let Pr(s’|s,a) be the transition probability function,
which specifies the probability of occupying state s’ € T'(s,a) directly after a is
performed in s. These two functions are computed as follows.

Let s = (I,Q,C,d, k) be a state and a € Ag an action where a is a valid
subset of requests and acceptances that can be performed in s. Then s’ =
(I',Q,C',d k" € T(s,a) if

— I’ contains the incoming orders from I, minus those offers that arrived on
day d, plus new incoming orders that result from the quotes accepted in a.
More formally, let I,;q = {{q,dger) | (¢,daer) € I,dger = d} be the orders
that came in on d, and let Ie = {(q,daer) | acc({sup,p,q,dge,d)) € a}
be the new incoming orders that arise as a result of accepting quotes. Then
I'=1 \ Toiq U Inew -

— @’ contains the quotes from (), minus those that were rescinded on day d,
plus those that are received as a result of the requests in a. Let Quq =
{{sup,p, ¢, dger, dr) | (sup,p,q,dger,d,) € Q,d, = d'} be the orders that are
rescinded on d’, and let Qe = {(sup, p, ¢, dger, d+1+ql) | req({sup, q,dger)) €
a} be the quotes received in response to the requests in a, where ¢l is the
quote length (i.e. the number of days for which the quote is valid). This could
be assumed to be constant over all suppliers. Thus Q' = Q \ Qoia U Qnew-
Note that there may be several possible values for the price p and the deliv-
erable quantity ¢ in the quotes in Q.e.. The transition probability function
will consider the probability of each outcome in determining the probability
of the state as a whole.

— ("’ is the amount spent C by day d, plus the amount spent on accepted quotes
in a, plus the RFQ costs. Thus C" = C+) " p+cyeq over all ace((sup, p, ¢, dgei,
d+ 1)) € a, where ¢4 is the cost of requests in a.

— k' is the starting inventory k for day d, minus the units sold t4 on d, plus
those received via incoming orders in Ipe. Thus &' = k —tq+ > ¢ for all
(q,ddet) € Inew. Note that there may be several possible values for 4, each

A Markov Model for Inventory Level Optimization 139

with some probability of occurring. The probability of any ¢4 greater than
kE+> qisO0.
—d =d+1.

Let s be a state and let T'(s,a) contain the states that can follow from per-
forming a in s. Then for each state s’ € T'(s,a), the probability P(s’|s,a) of
occupying s’ after a is performed in s is the probability of receiving the new
quotes in s’ given the requests in a, multiplied by the probability of the sales
realized in the transition from s to s’. Let d be the day specified in s, let Q,cq
be the set of new quotes received on day d+1 (i.e. the quotes that are in s’ but
not in s), and let ¢4 be the number of units sold on day d, which is the inventory
in ¢ minus the sum of the inventory in s and the units received (i.e. in e).
Let the demand distribution function df, supply distribution function sf and
price distribution function pf be as defined in section 2. Then the probability of
getting the quotes in Qe is

PTOb(Qnew) = H Sf(supdeF 1;ddeliaQi) pf(supmd+ lyddelivqiapi)
qui €EQnew
(1)

where qu; = (supi,pi, i, ddei;, dr;). Note that there must be a qu; for every
request in a. Unanswered or rejected requests should have a corresponding quote
qu; = (sup;, 0,0, dger,, dr,) In Qpew- Since the probability of selling ¢4 units on d
is df (d,tq), the probability of s’ occurring given that a is performed in s is

P(s'|s,a) = Prob(Quew) - df (d, tq) (2)

3.5 The Dynamic Programming Model

The value iteration method of dynamic programming is used to determine the
optimal action at each state. Let v : S — R be the value function that assigns
to each state its value (i.e. utility), let 7 : S — @ be the optimal policy and let
s=(1,Q,C,d, k) be a state. Then

fa(uk(k,d),uc(C)) ifd=d,

_ / / .
v(s) = max S/g(:m) fa(uk(k,d),v(s") - P(s'|s,q) otherwise
null ifd=d,
m(s) = q arg max S,eTZ(S ., fa(uk(k,d),v(s")) - P(s'|s,a) otherwise

(3)
where f; is the function for computing the value of the state in terms of the
inventory reward of the current state and the expected value of the following
states, and arg is the operator that returns the maximizing a. This function may
be constant or variable and can be constructed to factor in the decision maker’s
relative importance for optimizing either cost or inventory level.

140 S. Buffett

4 Using the Model to Determine RFQ Quantities

4.1 Modeling the Subproblem

While the Markov model presented in the previous section laid a framework for
all decision-making involved in optimizing target inventories, in several situations
the model may be too complex to solve in a reasonable length of time. In this
section we show how the model can be used to solve a more manageable piece of
the puzzle, and formalize the subproblem of determining the optimal quantity
to request in a given RFQ.

In this case, elements such as quoted costs are not considered, and thus
decision-making does not depend on the onerous task of enumerating all out-
comes for price. Instead, an acceptance rate is used, which is a static measurement
of the likelihood any quote will be accepted based on its price. For example, if it
is found that the quotes are accepted 55% of the time (or in the case when mul-
tiple quotes are solicited simultaneously for purpose of comparison, that some
quote is accepted), then the acceptance rate is 55%. While demand typically
changes each day, we assume that the acceptance rate is the average taken over
the procurement period. The only dynamic factor under consideration here is
the current inventory. The question is then, based on the current inventory, how
many units should be requested?

The problem is stated more formally as follows: Given a current inventory
level k, shipping time st (in days), daily inventory utility function uk(k, d), daily
demand function df (d, k) indicating the probability that k units are sold on day
d, and acceptance rate «, if an RFQ were to be submitted, how many units
should be ordered? The MDP for this problem is then a portion of the MDP for
the general problem. Each state s is a tuple (I, d, k) where

— I is the set of incoming orders
— d is the day.
— k is the current inventory.

An action is an RFQ rfqg = (g, d + st) for a particular quantity ¢ to arrive on
day d+ st. Every state has an associated reward equal to uk(k,d) where k is the
starting inventory on day d. The optimal action 7(s) then specifies the optimal
RFQ given state s.

4.2 Testing the Performance

To assess the potential performance of using this model, the method was tested
against a method from the literature that uses a Monte Carlo algorithm [13].
With this method, a reorder point r and a quantity ¢ are randomly chosen
from some distribution. Market behaviour is then simulated within the specified
parameters, where an order for ¢ units is placed each time the inventory falls
below 7. This process continues for several (r,q) pairs, and the optimal result is
noted.

Tests were run over a 150 day procurement period, with an inventory utility
function uk(k,d) = max{0,15—|15—k|} (utility maximized at k = 15, minimized

A Markov Model for Inventory Level Optimization

Utility Achieved by Each Method with
Constant Utility Function

Utility Achieved by Each Method with
Decreasing Utility Function

141

1600 1600

1500

1500
1400 1400

1300 1300

—— MDP
—=—MC

Utility

1200

Utility

1200 MDP
—=—MC
1100 1100

1000

1000

900

800 800

Shipping Time Shipping Time

Fig. 1. (a) Utility achieved using our method (MDP) and Monte Carlo (MC) using
a constant utility function over all 150 days in the procurement period, (b) Utility
achieved using our method (MDP) and Monte Carlo (MC) using a decreasing utility
function where 0 inventory is desired on day 150

Increase in Utilty Achieved by MDP
Method

m
3

-
3

w s oo o
8 & &8 3

Increase in Utility

= n
s 3

o

Shipping Time

Fig. 2. The increase in utility achieved by our method over Monte Carlo for a constant
and decreasing utility function

at k =0, k > 30) for all d, and a quote acceptance rate of & = 50%. Shipping
time was varied throughout the tests. A summary of the results is demonstrated
in Figure 1(a).

The Monte Carlo method is quite rigid, since at any given time either ¢
or 0 is ordered. Even though the optimal quantity and the optimal times at
which to order are utilized, it still does not perform as well as our method,
which adapts to the situation and determines the appropriate amount. Notice
that both methods perform worse as the shipping time is lengthened because of
increased uncertainty. To further demonstrate the advantages of our technique,
Figure 1(b) shows results of tests where the utility function is not constant. In
particular, this test utilized a decreasing utility function over time. This models
the situation where no inventory is desired at the end of the procurement period.

142 S. Buffett

Our method performs even better, since order quantities can be adjusted to
accommodate a changing utility function, where the Monte Carlo method uses
a static ¢ and r values. Figure 2 demonstrates the overall increase realized by
our method for each of the constant and dynamic utility functions.

5 The TAC-SCM Game

5.1 Game Description

The Trading Agent Competition has occurred annually since 2000. The com-
petition was designed to encourage research in trading agent problems, and it
provides a method for direct comparison of different approaches, albeit in an
artificial environment. The original competition focused on acquiring a pack-
age of items in set of auctions, but in 2003 the ”Supply Chain Management”
(SCM) [1, 2] game was introduced. The TAC-SCM game charges the competing
agent with the task of successfully managing a computer dealership: acquiring
components from suppliers, assembling these components into complete PCs, and
selling these PCs to a group of customers. Starting with an initial bank balance
of 0 and unlimited borrowing capabilities, the agents’ goal in the competition is
to make the most profit. To compete successfully, agents must be quite complex
and able handle different purchasing models. To win contracts with customers,
agents must win a first-price sealed-bid auction. To acquire goods successfully
from suppliers, agents must be able to effectively judge pricing trends. At the
same time, they must also consider that supply is limited, and thus rejecting an
offer could result in inability to acquire goods. Several other stochastic factors
such as customer demand, customer reserve values and delivery delays must also
be handled for the agent to be successful.

The procurement model of the TAC-SCM game loosely reduces to our MDP
model. Each day, an agent receives quotes from suppliers based on the previous
day’s requests, as well as quote requests from customers. From the procurement
point of view, the goal is to determine which quotes from suppliers to accept
and what new quotes to request, to optimize inventory and cost. Quotes and
RFQs take the same form as those described in this paper. Based on the bidding
strategy used in response to customer requests (we do not focus on bidding in
this paper, only procurement), the agent can judge the demand function by
assessing how likely it is to sell certain quantities each day. Based on previous
dealings with the various suppliers, the agent can also model the supply and
price distribution functions, and build the MDP. Dynamic programming is then
used to determine the optimal accepts and requests.

5.2 Our “NaRC” Agent

NaRC [7] competed in the 2004 TAC-SCM competition in New York. While we
qualified for the tournament (top 24 teams out of about 35), we were elimi-
nated in the quarter-final round (the first of three days of competition). Aspects
of NaRC utilized the MDP model described in this paper. In particular, the

A Markov Model for Inventory Level Optimization 143

purchase decision-making engine modeled the sequence of subsequent purchase
decisions as an MDP in order to determine the value of current quotes. While
thus far untested in the TAC-SCM competition, the technique of using an MDP
to compute optimal RFQs has been shown above to be quite promising. We plan
to implement the method in our agent for future installments of the competition.

6 Conclusions and Future Work

In this paper we present a mathematical model for determining when to request
quotes from suppliers, how to construct the RFQs, and which of the resulting
quotes to accept. Decisions are made in such a way as to optimize the level
of inventory each day, while lowering total cost. The problem is modeled as
a Markov decision process (MDP), which allows for the computation of the
utility of actions to be based on the utilities of consequential future states. Each
action is considered to be a set containing quote requests and accepts. Dynamic
programming is then used to determine the optimal action at each state in
the MDP. The model is then used to formalize the subproblem of determining
optimal request quantities, and experiments show that the technique performs
better than a standard technique from the literature. The TAC-SCM game is
also discussed, and the implementation details for own agent, NaRC, are briefly
described.

The idea of modeling problems similar to this as an MDP has been done
before. Boutilier et al. [4, 5], Byde [8], and Buffett and Grant [6] have previously
used MDPs for auction decision-making. However our model differs from these
works in two ways: 1) we consider the request-for-quote model rather than the
auction model, and 2) we buy items for resale with the extra aim of maintaining
a certain level of inventory, in addition to cost minimization. Other techniques
have been presented by Priest et al. [10,11] for purchasing items for resale;
however, these works do not attempt to measure the value of current choices
based on the value of consequential future decisions.

For future work, we intend to test the technique against other strategies to
determine under what conditions and situations the technique performs well
and not so well. Such strategies range from the more naive where quotes are
requested simply when inventories reach certain levels and the cheapest quote
is immediately accepted, to the more sophisticated where massive amounts of
inventories are built up (regardless of overhead costs) and intelligent selling
methods are employed to maximize profit. We believe that the latter type of
strategy, which was employed by several agents in the TAC-SCM game in 2003,
might not yield as much profit per unit as our technique, but could surpass our
technique in total profit because of the higher volume of transactions. As far the
potential success of using our technique in the actual TAC-SCM game, we believe
that while these high-volume agents may monopolize supply early in the game,
in the long run our agent will perform better, especially in low-demand games.
Only after experimentation with real-world examples as well as the TAC-SCM
will these questions be answered.

144 S. Buffett
References
1. R. Arunachalam, J. FEriksson, N. Finne, S. Janson, and N. Sadeh. The

10.

11.

12.
13.

supply chain management game for the trading agent competition 2004.
http://www.sics.se/tac/tacscm_04spec.pdf. Date accessed: Apr 8, 2004, 2004.
Raghu Arunachalam and Norman Sadeh. The 2003 supply chain management trad-
ing agent competition. In Proc. International Conference on Electronic Commerce
(ICEC2004), pages 113-120, Delft, The Netherlands, 2004.

R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

C. Boutilier, M. Goldszmidt, and B. Sabata. Continuous value function approx-
imation for sequential bidding policies. In the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-99), pages 81-90, Stockholm, 1999.

C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential auctions for the allocation
of resources with complementaries. In the Sizteenth International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 527-534, Stockholm, 1999.

S. Buffett and A. Grant. A decision-theoretic algorithm for bundle purchasing in
multiple open ascending price auctions. In the Seventeenth Canadian Conference
on Artificial Intelligence (AI’2004), pages 429-433, London, ON, Canada, 2004.
S. Buffett and N. Scott. An algorithm for procurement in supply chain manage-
ment. In Proc. of the Trading Agent Design and Analysis Workshop (TADA’04),
pages 9—14, New York, NY, 2004.

A. Byde. A dynamic programming model for algorithm design in simultaneous
auctions. In WELCOM’01, Heidelburg, Germany, 2001.

R.A. Howard. Dynamic Programming and Markov Processes. M.I.T. Press, Cam-
bridge, Mass., 1960.

C. Preist, C. Bartolini, and A. Byde. Agent-based service composition through
simultaneous negotiation in forward and reverse auctions. In Proceedings of the
4th ACM Conference on FElectronic Commerce, pages 55-63, San Diego, California,
USA, 2003.

C. Priest, A. Byde, C. Bartolini, and G. Piccinelli. Towards agent-based service
composition through negotiation in multiple auctions. In AISB’01 Symp. on Inf.
Agents for Electronic Commerce, 2001.

M.L. Puterman. Markov Decision Processes. Wiley, 1994.

J. F. Shapiro. Modeling the Supply Chain. Duxbury, Pacific Grove, CA, 2001.

Analysis and Classification of Strategies
in Electronic Negotiations

Marina Sokolova and Stan Szpakowicz

School of Information Technology and Engineering,
University of Ottawa, Ottawa, Canada
{sokolova, szpak}@site.uottawa.ca

Abstract. The intensive use of the Web, email and instant messag-
ing for inter- and intra-business communications has resulted in rapid
increase of electronic business communication, including negotiations.
Simulated electronic negotiations have become an important tool in the
study of “real world” electronic negotiations. We explore negotiation
strategies by applying Statistical Natural Language Processing and Ma-
chine Learning methods to the text data of simulated electronic negotia-
tions. We derive conclusions about strategies in successful and unsuccess-
ful negotiations. We support our claims by extracting information about
strategies and representing data through this information. We classify
data and analyze classification results with respect to learning abilities
of the classifiers and the data representation.

1 Electronic Negotiations

The intensive use of the Web, email and instant messaging for inter- and intra-
business communications [8] has resulted in commonly practised electronic busi-
ness communication, including negotiations. Electronic negotiations present new
tasks for text classification, information extraction, statistical and symbolic nat-
ural language processing (NLP) and machine learning (ML) methods. This paper
presents results obtained on one of such tasks - classification of the negotiation
outcomes based on the text representation of negotiators’ strategies.

Electronic negotiations, e.g., negotiations conducted through electronic means,
are more dynamic than traditional face-to-face negotiations. Electronic means
allow participation in several negotiations simultaneously, simplify direct links
between businesses, and connect people globally regardless of their cultural and
social differences [4,25]. On the negative side, e-negotiations have time, pre-
diction, judgement and competition biases [26]. The biases make the positive
outcome more difficult to achieve than in face-to-face negotiations.

Currently electronic means enable either quantitative automated negotia-
tions, where the system makes decisions, or non-automated negotiation support,
where decisions are made by negotiators [21]. The former — electronic auctions
and intelligent software agents — are outside the scope of our research. The lat-
ter comprise process-oriented communication systems and negotiation support
systems. Figure 1 shows the relations among e-negotiation means.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 145-157, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

146 M. Sokolova and S. Szpakowicz

Electronic Means

Quantitative automated Nonfz\ltltomatcd
negotiations negotiation support
(process—oriented systems)

.

Electronic Software Negotiation—support Communication

(decision—oriented systems)

auctions agents systems systems

Fig. 1. Types of electronic means in e-negotiations

The data obtained through e-negotiations depend on the features of the elec-
tronic means that support negotiations. The electronic means can have only com-
munication functions that allow the exchange of unstructured, free-form written
messages, or structured information — negotiation offers and messages. Another
type of electronic means are negotiation-support systems (NSS) with communi-
cation and decision-support functions. If an NSS supports the pre-negotiation,
negotiation and post-negotiation stages, the resulting data are a combination of
the corresponding three types of data.

This study continues the work on e-negotiation data presented in [22, 24, 23]
where ML and NLP methods analyzed how the language of negotiators affects
the outcome of negotiations. We aim to devise methods that would work on
any data gathered through negotiation, regardless of the specific conditions of
negotiations such as the means, environment or goals [7]. That is why we analyze
the characteristics common to (almost) all negotiations. We combine textual and
non-textual data to discover how the language reflects the negotiation strategies.
We propose two ways of extracting the strategy-related information.

Our empirical approach is based on a bootstrapping procedure of information
extraction from corpora, our analytical approach — on combining the negotiation
theory and linguistic properties. We compare the results in both cases, perform
feature selection by comparing classification results for different data represen-
tation, and analyze the classification results with respect to the learning ability
of the classifiers and the data representation. The obtained empirical results are
useful in the design of knowledge-based negotiation systems, to be able to warn
negotiators that their language use suggests failure.

Section 2 of the paper reviews previous research relevant to our studies. Sec-
tion 3 introduces the procedure of learning strategies from corpora and reports
on the results of learning. Section 4 explains how the negotiation strategies and
the influence strategies are reflected in language. Section 5 reports on the use
of strategies to represent data for classification of negotiation outcomes and the
analysis of classification results. Section 6 lists conclusions and directions for
future work.

Analysis and Classification of Strategies in Electronic Negotiations 147

2 Electronic Business Negotiations

The strategic approach to negotiations states that the outcome of negotiations
is the result of the negotiators’ strategic choices. In language, these strategies
are exhibited in the exchange of offers, agreement, refusal, questioning, answer-
ing [18]. During negotiation, participants employ influence strategies intended
to make the counterpart concede. Such strategies can be direct or indirect, ex-
pressed by various types of appeal [2]. The direct influence strategies are used
when the participant says what she wants the other party to do. In the indi-
rect influence strategies, such requests are implied and often masked by ask-
ing for sympathy. The influence strategies are exhibited in such negotiation
moves as argumentation, persuasion, threats and substantiation, and
in general behaviour such as questions, reactions, offers, exchange of informa-
tion [2,7].

A negotiator uses influence strategies to express personal power. The absence
of face-to-face situations, e.g., in phone or electronic negotiation, results in lower
use of pressure tactics, less impasse, and achievement of higher joint profit.
This corresponds to showing less personal power [25]. The sources of power
used in negotiations are: resource control, information power, personal power
(attractiveness, emotion, integrity, persistence and tenacity).

The general assumption for highly transparent markets, including electronic
markets, is that both parties always have the same level of information, so none
can benefit from excessive information power. The sources of personal power are
not present in an electronic exchange, except for texts of messages. Strobel [25]
claims that the avoidance of threats, positional statements and other messages
related to personal power promotes integrative solutions. Cellich and Jain [4]
draw the opposite conclusion: competitive behaviour prevails in electronic nego-
tiations. They also emphasize that personal power increases due to the reduced
risk of personality conflicts and the absence of face-to-face discussions.

In order to reach a goal, negotiators apply negotiation strategies and influ-
ence strategies. The effect of the strategies depends on the style of their delivery
[7]. We will show how the delivery of the strategies is related to and reflected in
the language of negotiators. We concentrate our studies on the analysis of parts
of speech (POS). We look for POS whose employment corresponds to agreement,
refusal, exchange of information, argumentation, persuasion, and substantiation.
We seek to find out how the negotiator’s indirect and direct influences on the
counterpart are implemented in the language. Threats can be real (to end nego-
tiations) or imaginary (to find another supplier if only one is possible).

A word of caution: although we investigate strategies that negotiators im-
plement, we do not support the assumption that all participants in interper-
sonal communications are rational agents, that is, always choose actions that
will satisfy their goals. This assumption has been relaxed in current studies on
negotiations [1, 6].

148 M. Sokolova and S. Szpakowicz

3 Learning Strategies from Corpora

The textual e-negotiation data bear all the structural and style characteristics
of the computer-mediated communication data; for a detailed overview see [22].
The following characteristics are important for this study: short and dense sen-
tences, simplified grammar, and restricted lexicon.! We use those characteristics
to establish the basic parameters of a learning procedure.

In the first hypothesis we suggest that the strategies employed in success-
fully completed (henceforth, successful) negotiations differ from the strategies
used in incomplete (henceforth, unsuccessful) negotiations. Our second hypoth-
esis is that we can learn differences in strategies by comparing corpora of texts
that accompany successful negotiations with those for unsuccessful negotia-
tions.

To support the hypotheses, we perform empirical studies on the data of sim-
ulated electronic negotiations supplied by NSS Inspire. Inspire is a research and
training tool with the largest available collection of e-negotiation data [11,22].
We have worked with transcripts of 2557 negotiations conducted in English.
The number of the data contributors is over 5000, 72% of them non-native En-
glish speakers. The data contains 1,514,623 word tokens and 27,055 word types.
The Inspire system identifies the outcomes of 1427 negotiations as an agree-
ment (successful) and the outcomes of the remaining 1130 negotiations as no
agreement (unsuccessful). We build corpora of texts that accompany successful
negotiations, concatenating all messages, and the same for unsuccessful negoti-
ations.

Obviously, there are many ways of comparing corpora. We chose to use N-
grams ranks where N-grams are ranked by their occurrences in corpora. The
reliability of word frequencies makes the statistical results a trustworthy mea-
sure [12]. For each corpus we rank N-grams according to their frequencies; the
lowest rank indicates the highest frequency. We look for N-grams that show
the negotiators’ goal (win by any means, reach a compromise, do away with
the assignment), their attitude to partners (friendliness, aggressiveness, indiffer-
ence), and behaviour in the negotiation process (flexibility, stubbornness). The
same N-grams must be noticeably present in either successful or unsuccessful
negotiations. Two major elements that affect N-gram selection are the words it
contains and its rank. The idea behind finding N-grams representative of each
corpus is quite simple. It is a bootstrapping procedure [10] with the seeds corre-
sponding to the basic negotiation moves, such as agreement, refusal, negotiating
issues.

It is a bootstrapping procedure [10] which learns from a small number of
words corresponding to the basic negotiation moves, such as agreement, refusal,
negotiating issues. These words are called seeds. The procedure allows us to learn
differences in corpora of successful and unsuccessful negotiations.

! This is also supported by the unusually low type-token ratio of the data.

Analysis and Classification of Strategies in Electronic Negotiations 149

A bootstrapping procedure of building the lists of representative
N-grams for successful and unsuccessful negotiations

Input: text data of all negotiations, text data of successful negotiations, text
data of unsuccessful negotiations, seeds.

Build the list L of unigrams for all negotiations

Build the lists of N-grams (N = 1,2, 3) for successful negotiations (NS).

Build the lists of N-grams (N = 1,2, 3) for unsuccessful negotiations (NU).

In L find unigrams of seeds among k most {requent unigrams (k is a prede-

fined cut-off point). Build the list W of such seeds.

5. For each w € W:
— Find its rank r
— Find its rank r}
— Calculate d}, = rl —rl.

6. Delete from W all w such that d}, < d (d is a predefined distance).

7. For each w € W:

— Find its bigrams among m most frequent bigrams on the list of bigrams

of NS (m is a predefined cut-off point).
— Find its bigrams among m most frequent bigrams on the list of bigrams

- N

Lin the list of the unigrams of NS.

in the list of the unigrams of NU.

of NU.
— o Find the rank 72 of the i — th bigram on the list of the bigrams of
NS.
e Find the rank r2 of the i — th bigram on the list of the bigrams of
NU.

e Calculate d? = r2 — r2.

— Calculate d2 = Y | d?
8. Delete from W all w such that d2, < d.
9. Find most frequent trigrams containing unigrams from W: repeat steps 7-8
for trigrams instead of bigrams.
10. Build the list Ly of trigrams, containing w € W, with their ranks.

Output: Lg.

Although it is possible to investigate N-grams with N > 3, the procedure
stops at trigrams because of the data characteristics listed earlier: simplified
grammar, dense and short sentences, restricted lexicon. The only adjustable
parameters are the distance d and the cut-off points k,m. In order not to
overload the procedure, we do not use weights to tune distances between N-
grams, though it seems a natural thing to do. We have tested the procedure
with d = min(100,2 * ranks), k = 100, m = 700. To find k,m we have cho-
sen the values that guarantee that the procedure works with N-grams covering
the same percentage of texts in both successful and unsuccessful negotiations
and eliminate low-frequency N-grams, thus keeping representative N-grams in
negotiation data. Needless to say, the choice of distance depends on the cut-off
points. For our cut-off points, the distance ensures that the ranks used to calcu-
late it correspond to different N-gram frequencies. Examples from the resulting
list appear in Table 1.

150 M. Sokolova and S. Szpakowicz

Table 1. Examples of Representative Trigrams

lword [N“trigram [ranksltrigram [rankul
have [3 ||we have to 66 that you have |75

4 ||that you have |92 |that we have |92
accept|2 ||to accept your |55 to accept your 103

3 ||lyou can accept |90 |you will accept|132
agree |2 |lagree with your|395 |you will agree [533

3 ||I agree with 426 |agree with you [565
will |3 ||I will be 69 |you will find |44

4 ||that we will 83 |I will be 52

We notice that in the trigrams from unsuccessful negotiations there is a trace
of aggressive behaviour (you will accept, you will agree), which is absent
from the corresponding trigrams in successful negotiations (you can accept,
agree with your). Examining the trigrams with “you”, we found that in suc-
cessful negotiations they correspond to politeness, in unsuccessful negotiations —
to aggressiveness. Expectedly, trigrams with the positive “accept” are more fre-
quent in successful than in unsuccessful negotiations. Among other findings we
note that trigrams indicating negotiation moves (sending or receiving an offer)
are more frequent in successful than in unsuccessful negotiations. The last result
corresponds to the results reported in [11].

4 Negotiation Strategies and Language

In the absence of external sources to validate our conclusions from corpus analy-
sis, we take another approach to the problem. We study how the negotiation and
influence strategies are connected with the language used in e-negotiations. We
take into account the non-standard characteristics of the data listed at the be-
ginning of section 3. Grammar simplification, density and shortness mean that
the language implementation of strategies is straightforward and concentrates
on the expression of the main goal of a strategy. Hence, we have looked for
the parts of speech (POS) that express logical necessity, appeal, intention with
respect to the subject of discussion, intention with respect to continuation of
negotiations. The resulting correspondence between the strategies and the POS
is the following:

— logical necessity - modals, e.g., can, will, have, may, should, would, could,
and not-negations, e.g., cannot, haven’t, shouldn’t, couldn’t, wouldn’t

— appeal - personal pronouns, e.g., I, we, you, my, your, no-negations, e.g.,
never, neither, no, none, nor, nothing, nowhere, not-negations not, don’t,
aren’t, and superlative adjectives latest, best;

— intention with respect to the subject of discussion - positive volition verbs,
e.g., hope, want, wish, like, prefer, agree, accept, promise, ask, afford, aim,
choose, decide, intend, look, plan, propose, make, made, manage, move, pro-

Analysis and Classification of Strategies in Electronic Negotiations 151

ceed, try, and negative volition verbs, e.g., decline, refuse, reject, disagree,
delay, hesitate;

— intention with respect to continuation of negotiations - mental verbs, e.g.,
know, think, understand, consider and adjectives, e.g., new, last, latest.

The modal auxiliary verbs (modals) have both logical and pragmatic mean-
ing. They express permission, possibility and necessity as the representatives
of logic; primary modals can, will, have, may are more direct and less hypo-
thetical than secondary modals should, would, could [13]. One of the indicators
of argumentation is an openness to feedback from the counterpart. The men-
tal verbs used in the positive statements I/we think/know/consider aim to get
feedback from the counterpart [17]. Such statements suggest careful deliberation
and reflective weighing. Verbs expressing volition of a speaker are divided into
positive volition and negative volition verbs with respect to the speaker’s inten-
tions about the subject of discussion and communications with the counterpart
[20]. The viewpoints of the negotiating sides are represented through personal
pronouns [3]. We consider that the viewpoint of a negotiator can be expressed in
positive and negative ways. The negative viewpoint can be expressed explicitly,
through not-negations, which are negations of the primary verbs be, have, do
and the modal can [10], and implicitly, through no-negations, e.g., no, nowhere,
neither, and fuzzy negations any, few [27].

We compared the use of the POS in the data of successful and unsuccessful
negotiations. Positive volition verbs, mental verbs, and no-negations are used
more often in successful negotiations. Negative volition verbs, not-negations and
primary modals are used more often in unsuccessful negotiations. We have run
two-tailed /non-directional #test on the relative frequencies of these POS in the
data. The null hypothesis is the assumption that the difference between two
samples is due to chance. The null hypothesis was rejected with 5 per cent confi-
dence level for not-negations of the verb be and with 20 per cent confidence level
for primary modals and collocations PersPronoun PrimModal. Table 2 presents
the t-test results. Statistically significant difference between the data from “suc-

Table 2. Statistical difference between samples

Sample Degrees of|t value [Significance
freedom level
Primary Modals 10 1.435 |0.2
Secondary Modals 6 0.180 |insignificant
You PrimModal 10 1.7328(0.2
I/we PrimModal 10 1.738 (0.2
Positive Volition Verbs 40 0.051 |insignificant
Negative Volition Verbs 12 0.452 |insignificant
Mental Verbs 10 0.021 |insignificant
Negations 8 0.150 |insignificant
Be Not 7 2.524 |0.05
PersPronoun do/have/can not||12 0.602 |insignificant
the latest & is the best 7 0.716 |insignificant

152 M. Sokolova and S. Szpakowicz

cessful” and “unsuccessful” corpus is shown in bold, followed by the confidence
level with which the null hypothesis was rejected. Be not, do/have/can not cor-
respond to negations of all inflections of the verbs be, do, have, can and their
spelling versions found in the data, e.g., “can not”.

Looking into the context of the use of POS, we conclude that there is a differ-
ence in the strategies employed by different negotiator classes, labelled according
to the negotiation outcomes. We have found that:

1. participants in successful negotiations show different attitude towards con-
tinuing negotiation than participants in unsuccessful negotiations: the former
signal to continue negotiation, the latter signal to stop;

2. participants in unsuccessful negotiations are more demanding than partici-
pants in successful negotiations;

3. negation varies among four data classes; it is more implicit in successful
negotiations than in unsuccessful negotiations.

5 Classification of the Negotiation Outcomes
and Discussion

We want to support experimentally our claim that the language implementation
of strategies differs in successful and unsuccessful negotiations. We represent the
data through the words corresponding to the strategies (“strategic” words) and
run classification experiments.

We have a total of 2557 examples in our data set, of which 1427 are positive
(successful negotiation) and 1130 negative (unsuccessful negotiation).?

The data are represented by bags of “strategic” words, and a bag corre-
sponds to one negotiation. In a bag, attributes have numerical values equal to
the number of occurrences of a “strategic” word in negotiation, and an additional
attribute whose value is equal to the number of other words in the negotiation.

We compare the performance of kernel, decision-based and probabilistic clas-
sifiers on negotiation data. The first class is represented by Support Vector Ma-
chines (SVM) [5], the second by decision trees (C5.0) [19] and the third one by
probabilistic Naive Bayes (NB) [28]. We use tenfold cross-validation to estimate
the accuracy. To make a fair comparison of all classifiers we do not perform any
additional data preprocessing such as scaling. Therefore, we use the sequential
minimal optimization (SMO) implementation of SVM in Weka 3 [28], not the
widely used SVM! 9" [9]. Note that the SMO’s drawback is a slow convergence
to a solution on noisy data [28].

We use C5.0 [19], a decision tree learner that classifies entries by separating
them into classes according to information gain G(a,y) of the attributes [14]. The
main reason for applying the decision-based classifiers is that their outputs are

2 The class labels are noisy, partially due to the Inspire system’s flaws. Analysis of the
data has shown that 3-5 % of the negotiations that the system records as unsuccessful
ended with the participants agreeing verbally to accept an offer.

Analysis and Classification of Strategies in Electronic Negotiations 153

easy to understand. We also justify the use of decision-based classifiers by high
accuracy - up to 75% - on the e-negotiation data [11], although those results
had been obtained on the non-textual data, and on the domain-specific data
representation [22].

In spite of the characteristics of decision-based classifiers, we do not want
to restrict ourselves to only one type of classifiers. Kernel methods, especially
SVM, have been successfully used for text classification. In general, SVM builds
a hyperplane that separates training examples of one class from examples in
another, with the largest possible separation. The search for the hyperplane
is done by solving a constrained optimization problem. This explanation ap-
plies to SMO as well. The accuracy and running time of SMO highly depend
on the polynomial degree and upper bound on polynomial coefficients. We per-
formed the exhaustive accuracy search for both parameters in SMO. The best
accuracy was achieved on the linear version with the upper bound equal
to 1.

We apply the Naive Bayes classifier (NB) because of its high accuracy in
topic and sentiment categorization [16]. The simplifying assumption states that
the feature values are conditionally independent given the class label. In the
experiments, we have modeled numeric values by the normal distribution and
by the kernel density estimators.

To estimate how the classification algorithms work, we calculate the accuracy
(Acc) on the test data. We want to know how the classifiers work on different
data classes, thus we employ the standard text classification metrics: precision
(P), recall (R) and F-measure (F') [10]. F' is calculated with P and R given
equal weights. Note that P, depending on true positives and false positives, and
R, depending on true positives and false negatives, are antagonistic [10, 14] and
F tends toward results with more true positives.

In order to verify our claim that the data representation using the “strate-
gic” words is necessary and sufficient, we compare the results with the re-
sults of two sets of experiments. In the first set we represent the data using
personal pronouns, modal verbs, the verbs do and be, and their negative ver-
sions. That is, we form bags of words for each negotiation using the num-
ber of occurrences of the words in the negotiation. In the second set of ex-
periments the data are represented by top 500 unigrams including function
words [22].

To justify adding the number of other words in negotiation when bags of
words are built with word frequencies, we evaluate the attributes using the “Se-
lect attributes” option in Weka. For each of the reported data representations
we evaluate the attributes with the Best First, Forward Selection, and Genetic
Search methods. The additional attribute was selected in all cases.

In Tables 3 and 4 we list the classification results, obtained for the equal
costs of misclassification and equal weights of precision and recall. We report
the results of NB with kernel density estimation because it classified negotiations
more accurately than NB with normal distribution.

154 M. Sokolova and S. Szpakowicz

Table 3. Classification accuracy, equal costs

Features # |INB [SMO|C5.0
“strategic” words 100({65.25|71.26|74.5
pers pronouns + modals + negations|26 [|63.57|67.4 |71.4
top 500 unigrams 501|(63.4 |71.7 |74.3

Table 4. Classification of negotiations, equal costs

Features # NB SMO C5.0

P |R |F P |R |F ||P R F
“strategic” words [100|[58.3|74 [65.2 ||73.2|74.8|74 ||72.5 |87.6 [79.25
pers pronouns + 26 {(54.9|73.2|62.7 (|66.5|72.7(69.5||69.2 |87.91|77.45
modals + negations
top 500 unigrams [501(|46.4|71.2]55.83|76.8|70.6|73.6(|73.17(85.19|78.54

We report the average multi-fold cross-validation results® for all the experi-
ments. These results were obtained over the set of parameters for each classifier
that yielded the highest classification accuracy. The baseline Acc equals 55.8%,
when all negotiations are classified as positives. Corresponding P, R, and F are
equal to 55.8, 100, 71.6 per cent respectively. # denotes the number of features
in the representations, or the number of attributes in bags of words.

High values of P and R, and expectedly high value of F', mean that the over-
all good performance of C5.0 is due to the high accuracy of classification of the
positive examples which dominate in the data. C5.0 performs poorly on the neg-
ative examples, which makes its application to the “real world” negotiation data
questionable. With P and R values closer than those in the C5.0 experiments,
SMO has shown more balanced performance. It classifies the positive examples
slightly worse than C5.0, and the negative examples considerably better.

For NB the low precision and moderate recall lead to expectedly low F-measure.
With the number of negative examples lower than the number of positive exam-
ples, this shows that NB classifies negative examples better than positive exam-
ples. This characteristics of NB will be very important when we gain access to
the data of the real world negotiations. Analyzing the learning rules and perfor-
mance results of NB we conclude that the assumption of conditional independence
is not met in successful negotiations and is met in unsuccessful negotiations. The
words are correlated more in successful negotiations and less in unsuccessful nego-
tiations. The fact that the kernel density estimators perform better than normal
distribution shows that the normality assumption does not hold for e-negotiation
data. The latter is consistent with conclusions [14] on natural language texts.

Now we consider three data representations discussed earlier. Performance is
the weakest when negotiations are represented only through personal pronouns,

3 All results on 500 unigrams, except for SVM, were produced with tenfold cross-
validation; the SVM results — with fivefold cross-validation.

Analysis and Classification of Strategies in Electronic Negotiations 155

modals and negations. Although there is a statistically significant difference in
their use in successful and unsuccessful negotiations, they do not provide enough
information to separate the two classes.

The addition of mental and volition verbs to personal pronouns, modals and
negations reduces the difference between the precision and recall values and im-
proves the classification accuracy and F-measure for all three classifiers. However,
the representation through 500 most frequent unigrams worsens recall and F-
measure for NB if compared with the representation by “strategic” words. This
means that positive examples are classified more accurately and negative exam-
ples less accurately, when represented by all the most frequently used words. We
attribute this to the fact that words not related to negotiation strategies, such as
greetings, closure, casual words, are similarly correlated in both successful and
unsuccessful negotiations.

We conclude that a reliable classification of negotiations is possible if the rep-
resentation includes elements of logical reasoning (personal pronouns, modals,
negations) and the attitude toward the issues (volition verbs in our case) and
the intention on continuity of negotiation (mental verbs in our case). Represen-
tation only via logical reasoning is insufficient to produce reliable classification
results.

6 Conclusions and Future Work

We have presented the results of research on strategies in electronic negotiations.
We worked on the data supplied by a negotiation support system. The size of
data and a large number of data suppliers provide enough grounds for the gen-
erality of the results. We have suggested two different procedures of studying
the implementation of strategies in language, one based on applying the boot-
strapping procedure to corpora of e-negotiation texts and another based on an
analytical exploration of negotiation strategies and language of e-negotiations.
The results on negotiation strategies produced by both methods correspond. The
results show that different strategies are employed in successful and unsuccessful
negotiations.

In this work we have used the data representation that does not bear the
characteristics of the specific negotiation domain. Thus the approach is rather
general and applicable to data gathered through other negotiation sources. We
have used the parts of speech corresponding to strategies to represent the data
of e-negotiations for classification purposes. We discussed the learning abilities
of the C5.0, SMO and Naive Bayes classifiers. We showed that, although C5.0
achieves higher accuracy than other classifiers, the performance of Naive Bayes
is more reliable if applied to the data from real-world negotiations.

We want to emphasize that although sentiment and emotion analysis is a well-
developed area of DM, ML and NLP research, as well as the planning dialogues
with the application of dialogue act technique, we could not find any other
related research on the strategies in negotiations.

156 M. Sokolova and S. Szpakowicz

In our future work we want to consider representation of negotiations through
both textual and non-textual data, e.g., numerical values used in negotiation
offers. This will give us more insight into the strategies of negotiators and the
correspondence of words and actions.

Acknowledgment

This work is supported by SSHRC through a major grant and by NSERC
through a doctoral scholarship. The authors want to thank Mohak Shah for
the thorough comments on the Machine Learning part of the paper.

References

1. M. H. Bazerman, J. R. Curhan, D. A. Moore, K. L. Valley, Negotia-
tion, Annual Review of Psychology, http://arjournals.annualreviews.org/doi/pdf/
10.1146 /annurev.psych.51.1.279

2. J. M. Brett. Negotiating Globally, Jossey-Bass, San Francisco, 2001.

3. W. R. Cantrall. Viewpoint, Reflexives, and the Nature of Noun Phrases, Mouton,
The Hague, 1974.

4. C. Cellich, S. C. Jain. Global Business Negotiations : A Practical Guide, Thomson,
South-Western, 2004.

5. N. Cristianini, J. Shawe-Taylor. An Introduction to Support Vector Machines and
other kernel-based learning methods, Cambridge University Press, 2000.

6. L. E. Drake. “The Culture-Negotiation Link”, Human Communication Research,
27(3), 317-349, 2001.

7. O. Hargie, D. Dickson. Skilled Interpersonal Communication: Research, Theory
and Practice, Routledge, 2004.

8. J. Hu. “Message in the bottleneck”, News.Com, 2003, http://news.com.com/2009-
1033-992348.html

9. T. Joachims.“ Making large-Scale SVM Learning Practical”, Advances in Kernel
Methods - Support Vector Learning, B. Schlkopf and C. Burges and A. Smola (ed.),
169-185, MIT-Press, 1999.

10. D. Jurafsky, J. H. Martin. Speech and Language Processing, Prentice Hall, 2000.

11. G. E. Kersten, G. Zhang. “Mining Inspire Data for the Determinants of Successful
Internet Negotiations”, Central European J. of Operational Research, 11(3), 297-
316, 2003.

12. A. Kilgarriff. Comparing Corpora, International Journal of Corpus Linguistics,
6(1), 97-133, 2001.

13. G. N. Leech. Meaning and the English Verb, Longman, 1987.

14. C. D. Manning, H. Schiitze. Foundations of Statistical Natural Language Process-
ing, The MIT Press, 1999.

15. M. P. Oakes. Statistics for Corpus Linguistics. Edinburg University Press, 1998.

16. B. Pang, L. Lee, S. Vaithyanathan. “Thumbs up? Sentiment Classification using
Machine Learning Techniques ”, Proc EMNLP’2002, 79-86, 2002.

17. M. R. Perkins. Modal Ezxpressions in English, Ablex Publishing Corporation, 1983.

18. R. M. Perloff. The Dynamics of Persuasion, Lawrence Erlbaum Associates, 2003.

19. J. R. Quinlan. C4.5: Programs for Machine Learning, Morgan Kaufmann Publish-
ers, San Mateo, California, 1993.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Analysis and Classification of Strategies in Electronic Negotiations 157

J. Rudanko. Complementation and Case Grammar, State University of New York
Press, 1989.

M. Schoop. A Language-Action Approach to Electronic Negotiations, Proc (LAP
2003), 143-160, 2003.

M. Shah, M. Sokolova, S. Szpakowicz. “The Role of Domain-Specific Knowledge in
Classifying the Language of E-negotiations”,Proc ICON 2004, 99-108,Hyderabad,
India.

M. Sokolova, S. Szpakowicz, V. Nastase. “Using language to Determine Success in
Negotiations: A Preliminary Study”, Proc Canadian Al 2004, 449-453, 2004.

M. Sokolova, V. Nastase, S. Szpakowicz. “Language in Electronic Negotiations:
Patterns in Completed and Uncompleted Negotiations”, Proc ICON 2004, 142-
151, Hyderabad, India.

M. Strobel. Effects of Electronic Markets on Negotiation Processes, Proc ECIS
2000, 445-452, 2000.

L. Thompson, J. Nadler. “Negotiating Via Information Technology: Theory and
Application”, Journal of Social Issues, 58(1), 109-124, 2002.

G. Tottie. Negation in English Speech and Writing, Academic Press Inc., 1991.

I. Witten, E. Frank. Data Mining, Morgan Kaufmann, 2000. http://
www.cs.waikato.ac.nz/ml/weka/

Fast Protein Superfamily Classification Using Principal
Component Null Space Analysis

Leon French, Alioune Ngom, and Luis Rueda

School of Computer Science, University of Windsor,
401 Sunset Avenue, Windsor ON, N9B 3P4, Canada
{frenchl, angom, lrueda}@uwindsor.ca

Abstract. The protein family classification problem, which consists of deter-
mining the family memberships of given unknown protein sequences, is very im-
portant for a biologist for many practical reasons, such as drug discovery, predic-
tion of molecular functions and medical diagnosis. Neural networks and bayesian
methods have performed well on the protein classification problem, achieving ac-
curacy ranging from 90% to 98% while running relatively slowly in the learning
stage. In this paper, we present a principal component null space analysis (PC-
NSA) linear classifier to the problem and report excellent results compared to
those of neural networks and support vector machines. The two main parameters
of PCNSA are linked to the high dimensionality of the dataset used, and were
optimized in an exhaustive manner to maximize accuracy.

1 Introduction

Recently the human, rat, and mouse genomes have been sequenced and many more are
in progress!. For example, Craig Venter is leading the Sorcerer IT Expedition on a global
quest to discover millions of new genes. His most recent results provided 1.2 million
new genes [1]. It is important to organize and annotate this massive amount of sequence
data to maximize its usefulness. In this regard, DNA sequences can be translated into
protein sequences by using standard bioinformatics tools. A protein sequence encodes
a protein, which are the primary machines, tools, materials, and messengers of any or-
ganism. An important tool for the sequential analysis of this process is protein sequence
classification which consists of determining the type or group of proteins to which an
unknown protein sequence belongs.

Protein sequence classification is an important problem in the area of bioinformatics.
Protein sequence classification is used to organize the large amount of data produced
by the genome sequencing projects. Once a protein is classified it becomes much more
useful to the general research community. Molecular evolution studies, protein function
and structure prediction are examples in which superfamily classification is important.
This organization aids in the finding of specific proteins for certain tasks, a researcher
would be able to search for a certain type of protein to solve a very specific problem.

! National Human Genome Research Institute, http://www.genome.gov.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 158-169, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Fast Protein Superfamily Classification Using PCNSA 159

Stated more formally, protein sequence classification consists of determining a su-
perfamily (or class) of an unknown sequence S given a known set of ¢ superfamilies
{®,0,...,0:}. A superfamily is defined as a set of sequences with similar global se-
quence similarity and having the same domain architecture [2]. Normally, a sequence
can belong to more than one superfamily, but the datasets tested in this paper contain
only disjoint superfamily sets.

Many methods that deal with the protein classification problem have been proposed.
Approaches used sequence alignment [3] and hidden Markov modelling [4]. Sequence
alignment is fast for two sequences but becomes very slow when aligning a sequence
to an entire superfamily. Hidden Markov model approaches are tied to the quality of a
time consuming task of multiple sequence alignment. Artificial neural networks have
also been applied to the problem [5, 6]. Wang describes a classifier that combines the
three aforementioned methods, and gives a good benchmark of the three methods [6].
Recently SVMs making use of customized string kernels have been applied [7]. These
past results have produced accuracies reaching the 99% range. In this paper, we present
a novel approach for protein classification based on principal component null space
analysis (PCNSA) [8], a recently developed linear classifier. Our results show very high
accuracy, in some cases misclassifying only seven samples of 2,500.

2 A Principal Component Null Space Analysis Based Approach

The classification approach that we provide is based on PCNSA [8]. The latter involves
firstreducing noise and dimensionality by performing principal component analysis(PCA)
on the entire training dataset. The second step then finds a null space for each class. The
null space is extracted by taking the dimensions with the least variance of each class
using eigenvalue decomposition. The null space is a subspace of the feature space in
which a given class has very little variance. The classification metric used to classify a
sample is the euclidian distance at unclassified sample to the mean of each class inside
the class null space. The classification rule is based on Bayes’; i.e. the unknown sample
is assigned to the class that minimizes this distance. Both the PCA and the null space
creation steps reduce the dimensionality of the dataset, or at least keep it the same. This
dimension reduction allows for classification of samples with many features, such as pro-
tein sequences. Previous classifiers do not cope well with datasets of such dimensionality
(also known as the “The Curse of Dimensionality”). The main disadvantages are a slow
learning phase and overfitting when the entire feature space is used.

PCNSA has previously been only applied to image and video classification [9]. In
this area, PCNSA has proven itself on datasets that have quite different within-class
covariance matrices, such as object recognition and abnormal activity detection [9].
Datasets of this type are referred to as “Apples vs. Oranges” problems, or stated in a
different way: unequal and non-white noise covariance matrices. Datasets with similar
matrices are referred to as “Apples vs. Apples”. In this case, the resulting null spaces
are very similar and should result in poor results.

The approach that we propose is based directly on the PCNSA algorithm [8]; »
and s are the two input parameters to our algorithm and specify the dimensionality of
the PCA space and null space, respectively. Consider a dataset D = {x;,...,x,} where

160 L. French, A. Ngom, and L. Rueda

M (@)

xi=[x;,...,x;" | is a d-dimensional feature vector that represents a protein sequence.

Our modified PCNSA algorithm proceeds as follows:

1. Normalize every data sample on a feature basis. For each feature/dimension and
data sample, x;, perform:

RV e S N o

i)y

2. For the full dataset, compute the sample mean vector and covariance matrix as
follows:

=

zi, and ()

=

1

iz

N n

E==Y(z—)(z—p. (3

3. Obtain the PCA projection matrix (an orthogonal matrix that is used in step 4), W,
by taking the eigenvectors corresponding to the r largest eigenvalues of X.

4. Project the training samples of each class into the PCA space as below:

yi=W'(zi—q), “4)

obtaining a new dataset Dy = {y1,...,y,}.

5. For each class, g, compute the estimates for the class mean, fi, and the class
covariance, ik in the PCA space, using (2) and (3), and a data subset that contains
the samples which just belong to .

6. Obtain the approximate null space (Ny),«s for each class wy as the s trailing eigen-
vectors of 2. The PCNSA classification matrix for class @y, W, is formed from
these trailing eigenvectors.

7. Classify an unknown sample x, by projecting x into the PCA space as follows:

y=W(x—) 5)

Then, assign x to class @y as per the following rule:

k=S (W (y—)|} ©6)

There are various differences between our algorithm and the versions given by Vaswani
and Chellappa [8, 10]: two filters on the null space eigen vectors are not used, and the
data is normalized. Although it is understood that both of these changes significantly
undermine the assumptions and theoretical basis of PCNSA, the following reasons sup-
port our modifications.

Normalization was originally performed to aid in accurate tracking of feature
weights. This normalization led to the null space failing to check for ¥; having a high
condition number or a large range of eigenvalues when computing the null space. Thus,
the filter (eigenvalues A < 10~*Aa¢) on the null space vectors was removed. We ex-
perimentally found that higher accuracy resulted from this change. A second check on

Fast Protein Superfamily Classification Using PCNSA 161

the null space was also removed and a parameter was instead used to limit the number
of null space dimensions, s, as seen in the original PCNSA paper [8]. These changes
result in another variable(s) and removes a variable that was involved in the null space
filtering. These changes made for a simpler, faster and more accurate classifier for the
protein sequence dataset.

3 The Protein Sequence Dataset

The dataset that we used in our experiments was created from the protein sequence
database (PSD) release 79.05 at the protein information resource (PIR) databank [2].
PSD provides fully annotated protein data in XML format for over 280,000 sequences.
For this application, only the sequence, sequence type and superfamily of the entries
were used. Some entries in the databank only have the sequence of a protein fragment,
or are ambiguous in describing the sequence (e.g. GLS(D.G.E)WXQL). All complete
non-ambiguous sequences of the four selected superfamily classes were processed.

The four classes collected and their size are ras transforming proteins (455), kinase-
related transforming proteins (517), globin proteins (672) and ribitol dehydrogenase
proteins (868). Although the PIR-PSD database entries contain one or more superfamily
classifications, none of the selected data subsets intersect. Two datasets were created: a
two-class dataset containing kinase and ras transforming proteins (972), and a second
multiclass dataset that includes all four classes mentioned above (2,512).

The string sequence data of each protein was processed to create an array of 465
numeric features plus the class label. At a high level, the features of a vector x that
represents a sample are:

) = length of sequence
x®) = isoelectric point (pI)
x3) = mass
x<4>,x<5), .,x(23) = amino acid distribution (20)
x<24),x(25),. .,x<423) = two-grams (400)
x<424>,x(425),. .,x<429) = exchange group distribution (6)
x(430) x(431) " x(465) — exchange group two-grams (36)

All of these features were generated directly from the sequence string. The pI and
mass features are estimates based on the polypeptide encoded by the sequence. Origi-
nally, the dataset contained only two-grams and exchange two-grams. As the research
progressed, more data was added with the resulting accuracies increasing.

The two-gram features account for the majority of the attributes. They represent the
frequencies of every consecutive “two-letter” sequence in the protein sequence. Two
grams have the advantages of being length invariant, insertion/deletion invariant, not
requiring motif finding and allowing classification based on local similarity [11].

Exchange grams are similar but are based on a many-to-one translation of the amino
acid alphabet into a six letter alphabet that represents six groups of amino acids, which
represent high evolutionary similarity. Exchange groups used for this dataset are:
e1={H, R, K}, ex={D, E, N, Q}, e3={C}, es={S, T, P, A, G}, es={M, I, L, V} and

162 L. French, A. Ngom, and L. Rueda

e6={F, Y, W}. The exchange groups are based on information from the point accepted
mutations (PAM) matrix [12], which statistically describes the probability of one amino
acid replacing another over time.

Given an example sequence “GLALLA” the non-zero two-grams are GL=1, LA=2,
AL=1 and LL=1. Translating “GLALLA” to an exchange group sequence results in
“eqeseqeseses”, with the resulting exchange two-grams of ese5=2, ese4=2, and e5es=1.
The frequency of the amino acids and exchange groups are also added to the dataset
entry, and result in G=1, L=3, A=2, e4=3, and es=3. Next, the two-gram counts are
converted to probability estimates by dividing by the total number of one-grams or
two-grams of the sequence. For “GLALLA” the frequencies estimates are: G:%, L=

[ST

A=%, e4=%, and €5=%, and the two-gram counts become: GL=%, LA=%, AL=%, LL=5,
e4es=%, e5e4=%, and e5es=%.

The full two-gram encodings result in a very sparse dataset?, with some features
having a zero frequency value for over 85% of the instances. With the example there
are (20° —4) + (6> — 3) = 429 zero-valued two-grams. The shortest protein sequence in
the dataset is 63 amino acids in length, which results in at most 62 non-zero two-grams
out of 400, further demonstrating the sparseness of the dataset. Past work has reduced
the two-grams given to the classifier in order to decrease training time. In this paper all
of the described features are given as input to the PCNSA algorithm.

4 Implementation

The dataset processing was implemented in Java 1.4, using the BioJava bioinformatics
toolkit®. The worst-case time complexity of the dataset creation is O(nl) where n is the
number of sequences matching the selection criteria and / is the length of the longest
sequence. The selection criteria is: complete, non-ambiguous sequences that are clas-
sified as a selected superfamily class. The PCNSA algorithm was also implemented in
Java using the colt high performance scientific and technical computing package for fast
matrix operations [13]. In addition to the core PCNSA algorithm, a feature was added to
produce the attribute weights for the hyperplane used in classification. The worst-case
time complexity of our PCNSA algorithm is O(nd? 4 d*) where d is the dimension of
the feature space and n is the number of samples in the training set. Classification is
O(d?) per test. These time complexities can be lowered depending on algorithms used
for matrix multiplication and eigen value decomposition. Computation of the best scor-
ing PCNSA parameter pair (320,297) takes approximately 8.5 minutes for a ten fold
cross validation on a 2.0Ghz, 32bit AMD processor.

5 Experiments and Results

All experiments were performed using ten fold cross validation, at least once and some
data is computed using 5 runs or 10 runs of ten fold cross validation. The accuracy

2 The term “sparse” refers to a matrix with a large percentage of zero valued entries.
3 Available at http://www.biojava.org.

Fast Protein Superfamily Classification Using PCNSA 163
is computed as the number of correctly classified divided by total number of samples
tested, averaged across the ten folds. When more than one run is performed, the accu-
racy is averaged across all runs and folds, plus or minus the unbiased standard deviation
of the run accuracies.

51 Two-Class Scenario

For the two-class case, Figure 1 shows the accuracy of PCNSA by varying the value
of r. The accuracy displayed is an average of all possible values of s for that r value,
where 465 > r > s > 1. Again, ten fold cross validation was used for each test.

100%

99% A

98% A

Accuracy

97% A

96% -

95% T T T T T T T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

PCA Dimensionality (r)

Fig. 1. Effect of PCA space dimension, r, on two-class accuracy averaged across all s values,
using ten fold cross validation for each (r,s) pair

Table 1. Comparison of a SVM to PCNSA, ten runs of ten fold cross validation

Method |Options Ras Kinase Average

PCNSA |r=80, s=30 99.52% =+ 0.20{99.96% + 0.08(99.75% =+ 0.11
PCNSA |r=133, =97 99.98% =+ 0.07|99.98% + 0.06(99.98% =+ 0.04
PCNSA |r=330, s=280 99.87% =+ 0.15(99.94% + 0.09(99.91% =+ 0.10
SVMLight|Linear Kernel 99.49% + 0.15| 100% +=0 |99.76% =+ 0.07
SVMLight|Polynomial Kernel degree 2|/99.60% =+ 0.09| 100% £0 [99.81% + 0.04
SVMLight|Polynomial Kernel degree 3|99.60% + 0.14| 100% =0 [99.81% =+ 0.07
SVMLight|Polynomial Kernel degree 4/99.41% + 0.15| 100% £ 0 [99.72% + 0.07

A high scoring r value of 133 was obtained from results in the Figure 1. Figure 2
expands on that value by showing the effect of s on the accuracy. Additionally charted
are the results of PCNSA given the dataset as two-grams plus exchange grams only, and
unnormalized data. The “standard” line is the normal dataset setup, as described in the
previous section. The unnormalized line skips the first step in the PCNSA algorithm.

164 L. French, A. Ngom, and L. Rueda

100.0% -

99.0% ~

98.0% -

Accuracy

97.0% +

o —

|

|

|

Standard I

96.0% - e e T e f
|

|

I

|

1

------ 2-Grams Only

1
N
'l — — — Unnormalized
!
|

95.0% +—1- " " " ; ; ; ; ; : : : : :
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Null Space Dimensionality (s)

Fig. 2. Effect of null space size and dataset type on two-class accuracy when r=133, based on 5
runs of ten fold cross validation

Five runs were performed and averaged for each value of s. This graph supports earlier
claims that normalizing the data reduces accuracy.

A SVM classifier was setup for comparison purposes. This was performed using
SVM-Light support vector machine version 6.01 [14]. The exact same datasets and
folds were given to SVM-Light and PCNSA. Three top scoring parameter choices for
PCNSA and four for SVM-Light are given. The only options provided to SVM-Light
was the kernel function, all others were left as default. Radial basis function and Sig-
moid kernels did not provide good results using the default kernel parameters. Table 1
shows the resulting accuracies across 5 runs of ten fold cross validation.

5.2 Four-Class Scenario

The four class problem contained proteins from the ras transforming protein (ras),
kinase-related transforming protein(kinase), globin and ribitol dehydrogenase (ribitol)
superfamilies. Figure 4 demonstrates the accuracy across all values of s, where r =
233. The value of 233 was chosen from an exhaustive search of all possible parameter
choices. Again, we can see the results of unnormalized and the two-gram plus exchange
gram datasets for 5 runs of ten folds. In this case, the difference between these datasets
is less clear and the two-gram plus exchange grams dataset actually has the highest scor-
ing result of 99.61%=.05 accuracy. This lessens the hypothesis that the added attributes
of mass, length, pI, amino acid and exchange gram frequencies increase accuracy. Ad-
ditionally, it is seen that the unnormalized performs best for low null space size.

The exhaustive search results was used to find three high scoring parameter combi-
nations which were then further evaluated for ten runs to provide an accurate estimate

Fast Protein Superfamily Classification Using PCNSA 165

Accuracy

|
0.995
0.99
0.985
0.98
0.975
0.97
0.965
0.96
0.955
0.95

40T

200
PCA Dimensionality (r)

Null Space Dimensionality (s)

Fig. 3. Effect of null space size and dataset type on four-class accuracy when r=233, based on 5
runs of ten fold cross validation

Table 2. Four class accuracies on three of the top r and s combinations, ten runs of ten fold cross
validation

Ras

Kinase

Globin

Ribitol

Accuracy

185
233
320

150
209
297

97.95% £ 0.45
98.50% £ 0.17
98.54% =+ 0.26

99.48% + 0.23
99.42% £ 0.18
99.44% + 0.14

100% £+ 0
100% £+ 0
100% £+ 0

99.75% =+ 0.09
99.77% =+ 0.06
99.85% £ 0.10

99.43% £+ 0.10
99.53% =+ 0.06
99.57% + 0.08

of accuracy. The results of this test are provided in Table 2. Accuracy on a per class
basis is also provided, it is important to note that the globin samples were classified
perfectly on all ten runs and all three parameter pairs.

In Table 3 it is possible to see how the algorithm accurately classifies data. This table
gives the seven highest weighted attributes for each class, from a single run for r=320
and s=297. They are calculated using the PCA projection (W) and class null space
projection (W,,s) matrices. These are approximate weights as certain variables, such
as class means, are not involved in the computations. Normalization of each attribute
— step 1 of the algorithm, makes these weights more accurate. Every two-gram seen in
the table occurs only once, demonstrating the uniqueness of the null spaces.

Table 4 provides a good comparison to other methods. All of the past work was
tested by the original authors on the PIR-PSD dataset but the class sizes and PSD

166 L. French, A. Ngom, and L. Rueda

100% ~
99% +
98% -
>
g
3
<
97% - “
|
|
. |1
96% |-/ e Standard ,,Jl.l
gl |peeee 2-Grams Only | |
,' > — — — Unnormalized ll
95% \, : T T T T T T T T T T L

0 20 40 60 80 100 120 140 160 180 200 220

Null Space Dimensionality (s)

Fig.4. Effect of null space size and dataset type on four-class accuracy when r=233, based on 5
runs of ten fold cross validation

Table 3. Approximate highest weighted attributes, generated from a single ten fold cross valida-
tion using r=320 and s=297. Every entry is an amino acid two-gram

Ras Kinase Globin Ribitol
VA -7.36||RT -9.24||SR -8.42| PT -10.07
Al +7.13|| IE +9.24||TE +7.80||WV +7.85
MV -6.96 ||DQ +7.77||QK +7.72|| FN -7.74
ED -691||RE -7.43||NF +7.21||KA +7.46
GE -6.90||WD +7.16{|HP +7.09|| RP -7.28
FM +6.76|CM -6.93 |[EG -7.02||RL +6.95
VT +6.50[| MF +6.71{|YY -6.79||WL -6.78

version varied. All two-class cases used kinase versus ras, and the three class case added
the globin superfamily.

The Combiner method by Wang [6] provides the highest accuracy but there are sev-
eral differences in the experimental setup involved. Primarily, the problem definition used
stated that a protein sequence can be classified into one or more superfamilies. This ef-
fected the dataset used, it contained 5 data subsets. The four sets corresponded to kinase,
ras, globin, ribotol and a fifth set of 1650 negative sequences that did not contain any
samples from the previous four sets. The classification took place in four binary exper-
iments — a superfamily set (positive) versus the 1650 negative sequences. This suggests
an easier-to-classify dataset than the one used in PCNSA experiments. Accuracy shown

Fast Protein Superfamily Classification Using PCNSA 167

Table 4. Comparison table of past and proposed classifiers on the PIR-PSD database

Method Author(s) PIR-PSD Release|Classes|Dataset Size| Accuracy
Fisher’s Rueda, Ngom[15] 62 2 731 96.54
PCNSA 2-Class French et al. 62 2 731 98.00
SVMLight default| Joachims[14] 79.05 2 972 99.81
PCNSA 2-Class French et al. 79.05 2 972 99.98
Multiclass NN Xi Zhang[16] N/A 3 3137 94.10
Bayesian NN* Wang et al.[6] 62 4 1886 98.08 3
Combiner * Wang et al.[6] 62 4 1886 99.64 5
PCNSA 4-Class French et al. 79.05 4 2512 99.57+0.08

for Combiner and the Bayesian NN was computed from the average accuracy of the four
binary classification experiments, weighted by number of test sequences.

It is important to note the complexity of the Combiner method. Combiner is based
on the results of four classifiers: primarily, the Bayesian neural network, and then the
results of classifiers based upon BLAST[3], SAM and SAM-T99 [17]. When compared
to previous methods PCNSA is much simpler, faster and almost equal in accuracy.

Most of these competing methods used smaller training datasets and different ex-
perimental setups. Two of them provide the same experimental conditions under the 2-
class case. First is the SVM using the above-described dataset and experimental setup.
Second is Fisher’s classifier, where a smaller training set was tested, as described in
Rueda and Ngom [15]. This second experimental setup had a 60/40 train and test split
with only 50 features. To assess PCNSA under similar conditions, we tested it using
the same 60/40 training and testing datasets leading to 98% classification accuracy, and
hence demonstrating its superiority over Fisher’s classifier.

6 Conclusion and Future Work

In this paper, we present an approach to the protein classification problem. Our method
is based on the PCNSA linear classifier, which is slightly modified from its original
version by introducing feature based normalization and removing two null space filters.

We have tested our method on four superfamilies for the PSD-PIR databank, and
compared our results to previous methods. The empirical analysis presented shows that
our method is superior to any previous results on the two-class problem, achieving
an accuracy of 99.98%, with a standard deviation of 0.04. In the four-class case, our
method performs at par to Combiner with 99.57%=0.08 accuracy, while possessing the
advantage of higher speed and lowered complexity.

Future work will involve testing this method on a larger dataset with sequences
from SCOP [18] or PROSITE [19]. The protein classification problem definition could

4 Binary classification performed for each of the superfamilies which is a very different experi-
mental setup from this paper.

5 Computed from the average of four binary classification experiments, weighted by number of
test sequences.

168 L. French, A. Ngom, and L. Rueda

be modified so that a protein sequence can be classified into zero or more superfamilies,
which is a more biologically accurate model for the problem.

Bioinformatics has a large amount of pattern classification problems. Microarray
datasets are very very large in dimension and are often not fully analyzed. Microarray
datasets are a promising match for PCNSA because of their propensity to very high
noise and intuitively fits the description of an “Apples vs. Oranges” problem. Further-
more, the weight tracking module developed for PCNSA would allow output of the
most heavily weighted genes or features in the microarray datasets.

Another avenue of research involves an interesting algorithm, similar to PCNSA
named Multispace KL® for pattern representation and classification [20]. Since it is
similar to PCNSA, it may perform well on the protein classification problem.

Acknowledgements: This research has been partially supported by NSERC, the Natural
Sciences and Engineering Research Council of Canada.

References

1. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu,
D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W.,
Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch,
C., Rogers, Y.H., Smith, H.O.: Environmental Genome Shotgun Sequencing of the Sargasso
Sea. Science 304 (2004) 66-74

2. Wu, C.H., Yeh, L.S., Huang, H., Arminski, L., Castro-Alvear, J., Chen, Y., Hu, Z., Kour-
tesis, P, Ledley, R.S., Suzek, B.E., Vinayaka, C.R., Zhang, J., Barker, W.C.: The Protein
Information Resource. Nucleic Acids Res 31 (2003) 345-7

3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.:
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res 25 (1997) 389-402

4. Madera, M., Gough, J.: A comparison of profile hidden Markov model procedures for remote
homology detection. Nucleic Acids Res 30 (2002) 4321-8 1362-4962 Journal Article.

5. Wu, C.H,, Berry, M., Fung, Y., McLarty, J.: Neural Networks for Full-Scale Protein Sequence
Classification: Sequence Encoding with Singular Value Decomposition. Machine Learning
21 (1995) 177-193

6. Wang, J., Ma, Q., Shasha, D., Wu, C.: New techniques for extracting features from protein
sequences. IBM Systems Journal 40 (2001)

7. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for SVM protein
classification. Pac Symp Biocomput (2002) 564-75

8. Vaswani, N.: A Linear Classifier for Gaussian Class Conditional Distributions with Unequal
Covariance Matrices. In: Intl. Conference on Pattern Recognition (ICPR). Volume I. (2002)
240

9. Vaswani, N., Chellappa, R.: Principal Component Null Space Analysis for Image/Video
Classification. submitted to IEEE Transactions on Image Processing (2004)

10. Vaswani, N., Chellappa, R.: Classification Probability Analysis of Principal Component Null
Space Analysis. Intl. Conference on Pattern Recognition (ICPR) (2004)

6 KL or the Karhunen-Loeve transform is also known as Principal Component Analysis (PCA).

11.

13.

14.

16.

18.

19.

20.

Fast Protein Superfamily Classification Using PCNSA 169

Wu, C., Whitson, G., McLarty, J., Ermongkonchai, A., Chang, T.C.: Protein classification
artificial neural system. Protein Sci 1 (1992) 667-77

Dayhoff, M., Schwartz, R., Orcutt, B.: A Model of Evolutionary Change in Proteins. Atlas
of Protein Sequence and Structure 15 (1978) 345-358

Hoschek, W.: Uniform, Versatile and Efficient Dense and Sparse Multi-Dimensional Arrays.
(2000)

Joachims, T., Schlkopf, B., Burges, C.: Making large-Scale SVM Learning Practical. Ad-
vances in Kernel Methods - Support Vector Learning. MIT-Press (1999)

. Rueda, L., Ngom, A.: An Empirical Evaluation of the Classification Error of Two Thresh-

olding Methods for Fisher’s Classifier. In Arabnia, H.R., ed.: International Conference on
Artifical Intelligence and International Conference on Machine Learning; Models, Technolo-
gies and Applications. Volume II., Las Vegas, Nevada, USA, CSREA Press (2004) 837-842
Zhang, X.: Protein Family Classification Using Multiple-Class Neural Networks. Master’s
thesis, University of Windsor (2004)

. Karplus, K., Barrett, C., Hughey, R.: Hidden Markov models for detecting remote protein

homologies. Bioinformatics 14 (1998) 846-56

Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of
proteins database for the investigation of sequences and structures. J Mol Biol 247 (1995)
53640

Bairoch, A., Bucher, P.: PROSITE: recent developments. Nucleic Acids Res 22 (1994)
3583-9

Cappelli, R., Maio, D., Maltoni, D.: Multispace KL for Pattern Representation and Classifi-
cation. IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001) 977-996

First Steps Towards Incremental Diagnosis
of Discrete-Event Systems

Alban Grastien!, Marie-Odile Cordier!, and Christine Largouét?

! Trisa, University of Rennes 1, Campus de Beaulieu,
35042 Rennes Cedex, France
{agrastie, cordier}@irisa.fr
2 University of New Caledonia, BP. 4477, 98847 Nouméa Cedex,
New Caledonia
largouet@univ-nc.nc

Abstract. This paper deals with the incremental off-line computation
of diagnosis of discrete-event systems. Traditionally, the diagnosis is com-
puted from the global automaton describing the observations emitted by
the system on a whole time period. The idea of this paper is to slice this
global automaton according to temporal windows and to compute local
diagnoses for each of these windows. It is shown that, under some con-
ditions, the global diagnosis can be computed from the local diagnosis.
This paper presents the formalization used to compute an incremental
diagnosis, relying on the new concept of automata chain. It is then shown
that it is possible to take into account the diagnosis obtained for the pre-
vious temporal windows to incrementally compute the current diagnosis
more efficiently. This work is a first and necessary step before considering
the on-line diagnosis computation. The main difficulty is then to ensure
the correct slicing of the observation automaton and to determine the
appropriate temporal windows.

1 Introduction

It is well-established in the Model-Based Diagnosis community that a diagnosis
is defined as the set of trajectories consistent with the observations. Different ter-
minologies can be used as histories [1], scenarios [2], narratives [3], consistent
paths [4] or trajectories [5]. A diagnosis is then formally defined as the syn-
chronized product of the automaton modelling the system and the automaton
modelling the observations emitted by the system on the considered time period.
In an off-line context, this observation automaton can be huge (especially when
taking into account uncertainties on delays) and its size depends directly on the
length of the time period. This is for instance the case for the computation of
an a posteriori diagnosis from observations collected on a few days, as for alarm
logs in telecommunication networks. In this paper, we present the idea of slic-
ing the observation automaton according to appropriate temporal windows in
order to compute incrementally the diagnosis rather than globally considering
the computation of diagnosis.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 170-181, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

First Steps Towards Incremental Diagnosis of Discrete-Event Systems 171

To reach this objective, we propose the concept of automata chain to repre-
sent observations and diagnoses by slices. We then show that it is possible to
compute the global diagnosis from this modular representation of observations.
For each temporal window, a local diagnosis is computed and the global one can
be correctly represented by the automata chain of these local diagnoses. A first
formalization of diagnosis by slices is given. The problem that appears is the
huge size of these local diagnoses when computed in parallel. A second formal-
ization is then proposed to compute incrementally the current diagnosis from
the previous one, elaborated on a past temporal window. This work is a first
and necessary step motivated by the ambitious problem of on-line incremental
diagnosis.

The formalism used to represent the system model, the observations and the
diagnosis is given in Section 2. Section 3 defines the automata chain concept
and shows how the automata chain can be used to compute the global diagnosis.
Two approaches for the incremental computation of the diagnosis are detailed
and discussed in Section 4.

2 Automata and Global Diagnosis

This section deals with the problem of computing a global diagnosis without
considering the problem of incrementality. These definitions are necessary for
the incremental computing of diagnosis discussed in the following sections.

2.1 Automata and Trajectories

The system considered evolves with the occurrence of events and an event can
cause, by propagation, other events (case of reactive systems, see for example
[6]). Consequently, events can occur simultaneously. We denote E the set of
events.

The behaviours of the system are represented as classic automata:

Definition 1 (Automaton).
An automaton is a tuple A = (Q, E, T, 1, F) where:

— @ is a set of states,

— FE is a set of events,

T C (Q x2F x Q) is a set of transitions t = (q,1,q") where t connects the
source state q to the target state ¢ on a label | which is a non-empty set of
events (I C E),

I C Q is the set of initial states and

F C Q is the set of final states.

We consider that the transition labels are non-empty sets of events. However,
Vg € Q, (¢,0,q) is an implicit transition of T'.

Definition 2 (Trajectory).
A trajectory, denoted traj on an automaton A = (Q, E,T,I,F) is the couple of
a finite state sequence (qo,--.,qn) and of a label sequence (11, ...,1,) such that:

172 A. Grastien, M.-O. Cordier, and C. Largouét

7Vi6{0a"'an}? QZEQ)

- Vi€ {17"'an}a ti = (Qiflalhqi) € T7
—qo €1 and

- qn € F.

A trajectory is defined as a sequence of states (such that the first state is an
initial state and the last state a final state) and a sequence of labels over the
transitions between each state of the trajectory.

A trajectory can contain implicit transitions of the automaton. We con-
sider that a trajectory is equal to the trajectory from which implicit transitions
have been removed. Let traj = ((qo,- -G, Git1y- -+, Gn)s U1,y lisliz1,y -y ln))
and traj’ = ((qo,-- -9, GisGit1--->qn), oy, iy 0,0ix1, .., 1p)). Then traj =
traj’.

Two automata A and A’ are identical if their set of trajectories are iden-
tical. We call simplified automaton of A the automaton A’ = A where all the
states and transitions that do not appear in at least one trajectory have been
removed. In the following, when computing new automata, only simplified ones
are considered.

2.2 Synchronized Automata

Definition 3 (Synchronization of labels).

Let 11 be a label on E1 and ls be a label on Ey. We say that 1y and ly are
synchronized iff I; N (E1 N E2) = lo N (Ey N Ey). Their synchronization, denoted
O(l1,12) is the label Iy Uly on the set of events Ey U Es.

Two labels are synchronized if the synchronization events (E; N Es) present
in one label are present in the other label.

Definition 4 (Synchronization).

Let Ay = (Q1,E1,Th, 11, F1) and Ay = (Q2, E2, T, I, F5) be two automata.

The synchronized automaton of A; and Az, denoted Ay ® Ao, is the automaton
=(Q,E,T,1,F) defined by:

- Q=Q1xQ2,
~ E—FE,UE,,

- T={lar, @)L (q1,0) | 3h.l,

e (= NL=0)V(q,li,q)) €Ty
o (2=qy Nla=0)V (q2,l2,¢5) € T
[] l:@(lhlg)
})
— Izll X 12 and
— F:Fl X Fg.

Each transition of the synchronized automaton A corresponds to a pair of
transitions on automata A; and A, such that the labels of the transitions are
synchronized.

First Steps Towards Incremental Diagnosis of Discrete-Event Systems 173

It can be easily proved that (4; ®A43)®As = A1 ®@(A2®A3) with the following
state renaming: ((q1,¢2),q3) — (q1, (¢2,¢3)). In the following, and to simplify, we
denote: A=41®...04,=41(...04,) =(A1®..)®A, =(Q,E,T,1,F)
with @ = Q1 X ... X Q. Moreover, we consider that 4; ® Ay = Ao ® A;. In a
more general way we consider that ((¢1,¢2),q3) = (q1, G2, ¢3)-

2.3 Diagnosis

Definition 5 (System model).

We denote by MOD = (QMOP pMOD TMOD [MOD pMODY e system model.
IMOD s the set of possible states at the time to. The final state may be any of
the states: FMOP = QMOD The set of observable events is EgBOSD C EMOD,

Let us now consider the observations and diagnosis definitions. Usually, due
to uncertainties on the observations, we do not know the total order of the ob-
servations emitted by the system. Consequently the observations are represented
by an automaton, each trajectory of which representing a possible order on the
emitted observations during the period [to, t,].

Definition 6 (Observations).
The observations, denoted OBS, are represented by an automaton describing the
observable events emitted by the system during the period [to,ty].

Definition 7 (Diagnosis).

The global diagnosis, denoted A,, is an automaton describing the possible tra-
jectories on the system model compatible with the observations emitted by the
system during the period [to,ty].

The global diagnosis of the system can be computed in the following way (see
for instance (7, 8]):

A, = OBS,, ® MOD (1)

3 Automata Chain and Global Diagnosis

3.1 Objectives

At the end of the previous section we have presented a way to compute the
global diagnosis of the system on the period [tg, t,,]. Our goal is now to compute
a diagnosis on the period [to,t;] (¢ < n) and, given this diagnosis as well as
the observations on the period [t;,t;11], to incrementally compute the diagnosis
[to,ti+1]- In order to achieve this goal we introduce the concept of automata
chain and first apply it to the case of global diagnosis. We then extend the
principle to the problem of incremental computation detailled Section 4.
Figure 1 illustrates the principle of slicing an automaton into an automata
chain and conversely (called the reconstruction). The use of automata chain for
the diagnosis is also presented in this figure. Given the observation automaton
OBS,, and the model of the system MOD, it is possible to compute the global

174 A. Grastien, M.-O. Cordier, and C. Largouét

diagnosis by synchronization, as presented Section 2. The idea is to slice the ob-
servations automaton into a sequence of automata OBS® called automata chain,
so that the original observation automaton can be rebuilt from the automata
chain by a reconstruction. Each automaton OBS® is local to a temporal window
Wi, The local diagnosis of the temporal window W? is computed using OBS®.
Finally, the global diagnosis is obtained by reconstruction of the local diagnoses.

reconstruction
Observation slicing Observation
automaton chain
Automaton Chain
synchronization synchronization
by MOD by MOD
Global reconstruction Diagnosis
diagnosis chain

Fig. 1. Principle of the use of an automata chain

We define below the automata chain and give the properties that enable us
to compute the diagnosis with the automata chain as illustrated on Figure 1.

3.2 Y -Transition

We define a special class of events called T-events (denoted 7; for i € N). An
T-event corresponds to a clock tick associated with the date ¢;. It does not
correspond to an event of the system.

We assume that an 7-event and a system event e € E cannot occur simulta-
neously: if [is such that 3k, 1} € [then I = {7} }. In the following of this paper,
we note [= 1}, for | = {7} }. We call Y-transition a transition labeled by 7.

We change the definition of synchronization by adding the following property
to the definition 3. To be synchronized, two labels I; and I3 should satisfy this
condition: if (3i € {1,2},5 € {1,2},j # i), l; = T}, then either [; =; or [; = 0.
Given this new definition, we ensure that the property on the T-event is satisfied
by the synchronization of two labels.

A temporal window W? is defined as the period between two ticks represented
by 7;_1 and T;. The period W" is the period coming after 7 and the period W
is the period coming after the last tick 1,,_1.

3.3 Automata Chain

Definition 8 (Automata chain).

A sequence of automata (A, ... A™) with A® = (Qi,Ei,Ti,I",Fi)' 1s called an
automata chain and denoted €4 if Vi € {1,...,n},Vk e N, T}, ¢ E*.

First Steps Towards Incremental Diagnosis of Discrete-Event Systems 175

The meaning of an automata chain is the following: from a state q; from I,
it is possible to reach by the transitions of A! a state ¢ of F! N I?; and then,
it is possible to visit A% from ¢, etc. The automaton A? is associated to the
temporal window W?. An automata chain (A!,..., A™) can also be represented
(AL, An=1) An).

The length of the chain is the number of automata in the chain. A 3-long
automata chain is presented on Figure 2. To simplify the representation the
labels over the transitions are not represented.

Fig. 2. Chain of three automata

Definition 9 (Chain concatenation).

Let E4 = (AL, ..., A™) be an automata chain with A* = (Q%, E*,T*,I*, F*). The
chain concatenation of €4, denoted &E4 is an automaton A’ = (Q', E',T',I', F")
defined by:

— Q' =(Q'U...uQ™) x (W ..., W},

— F=(FB'U...UE"YU{T,...,Tn 1},

" ={((g. W), 1, (¢, W) | (¢.1,¢') €T} U
{((; W), 75, (g W) | g€ F'Aqe I},

I'=T1"x {W'} and

F' = F" x {W"}.

Since different automata of an automata chain can have states in common,
the knowledge of a state g is not necessary related to a single temporal window.
Consequently, the states ¢ of the automata chain are said relative while the
states (g, W') from the chain concatenation are said absolute. The concatenation

A

IR
@H@T;@H

. N
ikent

Fig. 3. Concatenation of the chain of Figure 2

176 A. Grastien, M.-O. Cordier, and C. Largouét

transforms relative states into absolute states. The automaton obtained by a
concatenation is called an absolute automaton.

The concatenation of the automata chain presented Figure 2 is shown Fig-
ure 3. To simplify, the states (¢, W?) are noted (g, 7).

Generally, we note: €4 = A'@... 0 A" = (A'® ... A" 1) A™

We introduce now the representation of an automaton by an automata chain.
In order to achieve this goal, we first give some definitions about trajectories.

Definition 10 (Trajectory abstraction).

Lettraj’ = ((¢b,---,4,), (13, --.,1),)) be a trajectory on absolute states. Then, the
abstraction of traj’ is the trajectory defined by traj = ((qo,---,qn), (l1,--,1s))
so that:

—Vie{0,...,n}, 3k, ¢ = (¢, WF) and
—vie{lL...on), G =Ti=L=0AFL =T =1 =1).

Definition 11 (Automaton abstraction).

Let A = (Q',E',T',I',F') be an automaton on absolute states and let A =
(Q,E, T,I,F) be an automaton on relative states. A is an abstraction of A’,
denoted A ~s A', iff;

— for any trajectory traj of A, there exists traj’ from A’ and a trajectory trajs
from A so that trajs = traj and trajs is the abstraction of traj’ and

— for any trajectory traj’ from A’, there exists a trajectory traj from A so that
traj is the abstraction of traj’.

Definition 12 (Reconstruction).

Let £4 be an automata chain. Let A = (Q, E,T,I,F) an automaton so that
Vk, Tx ¢ E. A is the reconstruction of €4 (denoted A ~,. E4) iff A is an
abstraction of BE4.

Definition 13 (Slicing).
Let A be an automaton and E4 be an automata chain. E4 is a slicing of A iff A
is a reconstruction of E4.

The links between the automaton, the automata chain and the absolute au-
tomaton are presented on Figure 4.

The automaton presented Figure 5 is the abstraction of the automaton shown
Figure 3. Thus, the automata chain given Figure 2 is a slicing of this abstract
automaton (cf. Figure 5).

Property 1. Let A be an automaton. Let €4 be a slicing of A. Let As =
(Q2, B2, To, Iz, F3) be an automaton so that Yk, Yy ¢ Ea. Then A ® Ay ~gps
(@EA) ® AQ.

3.4 Synchronization of Automata Chain

Definition 14 (Prefix-closed automaton).
Let A = (Q,E,T,1,F) be an automaton. The prefix-closed automaton of A,
denoted AT, is equal to the automaton A in which all states are final (F* = Q).

First Steps Towards Incremental Diagnosis of Discrete-Event Systems 177

reconstruction

- Automata ~ concatenation Absolute
. —_—
Automaton —_— chain automaton
slicing
abstraction

Fig. 4. Links between the automaton, the automata chain and the absolute automaton

Fig. 5. Abstraction of the automaton of Figure 3

Definition 15 (Suffix-closed automaton).
Let A = (Q,E,T,I,F) be an automaton. The suffix-closed automaton of A,
denoted A~ , is equal to the automaton A in which all states are initial (I~ = Q).

We denote A the automaton prefix-closed suffix-closed (A% = (A*) =
_\T

(A7)7).

Definition 16 (Synchronization of a chain by an automaton).

Let E4 = (Al,... A™) be an automata chain. Let Ay be an automaton. The

synchronization of £4 by As is the automata chain, denoted £4 @ As, defined
by: Ea @ Ay = (Al @ AL, A2 @ AT .. A" 1 @ AT A" @ A7).

The synchronisation of a chain automata with an automaton As consists in
synchronizing each automaton of the chain with the automaton As. In the
synchronization of an automata chain £4 = (A!,..., A") with an automaton
As = (Q2, Eo, Ty, I, Fy), all the states of Ay are considered to be initial, during
the synchronization with A® (i # 1), since the state g, of A current during 7;_
is not necessary initial. Thus, we have used the suffix-closed automaton of A,. A
similar reasoning has been applied for the final state and then the prefix-closed
automaton is also used.

Property 2.
Let £4 be an automata chain and let Ay = (Q2, Fa, T, I, F5) be an automaton
so that T ¢ E5. Then, ®(Ea ® Ag) = (®€4) ® As.

Proof. This property can be checked by proving that the set of trajectories of
@(Ea ® As) and the set of trajectories of (BE€4) @ Ay are equal.

178 A. Grastien, M.-O. Cordier, and C. Largouét

Corollary 1.
Let A be an automaton. Let E4 be a slicing of A. Let Ay = (Qa, Ea, T, I, F5)
be an automaton so that T ¢ Es. Then, E4 @ A is a slicing of A® A,.

3.5 Diagnosis

Let MOD = (QMODP pMOD pMOD [MOD [MOD) he the model of the system
as presented in Section 2. Let us remark that MOD does not give any information
on the final states of the system (FMOP = QMOP) Thus, we have the following
properties: MOD' = MOD and MOD¥ = MOD™.

Let OBS,, be the automaton representing the observations emitted by the
system and £4 be a slicing of OBS,,.

We have:

Ay ~ree E0Bs,, @ MOD (2)

4 Incremental Diagnosis

In this section, we consider the incremental computation of the diagnosis. Our
goal is to compute the diagnosis on the temporal window W;11 = [to, t;+1] from
the diagnosis on the window W; and the observations on the window W+t!.

In the following, the diagnosis is formalized as a diagnosis chain. We first
present the interest of using diagnosis chain rather than the complete diagnosis
automata as described previously. We first propose a parallelized computing to
elaborate the diagnosis from the results obtained in the previous section. Finally,
we show that it is possible to take into account the diagnosis obtained for the
previous temporal windows to incrementally compute the current diagnosis in a
more efficient way.

4.1 Diagnosis Chain

As presented Section 2, the diagnosis is defined as a set of trajectories on the
system model and then can be easily formalized by an automata chain.

Definition 17 (Trajectories concatenation).
Let traj® = ((gf,...,q".), (li, ... L)) be i trajectories so that Vk € {1,...,i—
1}, qsk = qé““. Then, the concatenation of the i trajectories traj® is defined by:

traj = ((qé,...,q,lll,q%,...,qi',...7q;i),(l%7...,l}ﬂ,...,l’i7...,lfli)).

Property 3.
Let A be an automaton and let E4 = (Al ..., A?) be a slicing of A.

— LetVk € {1,...,i}, traj® = ((¢F, . .. 7qfl’(k))7 (I1, .-y luwy)), @ trajectories on
the automata A* so that traj, the concatenation of the i trajectories, exists.
Then, traj is a trajectory of A.

First Steps Towards Incremental Diagnosis of Discrete-Event Systems 179

— Let traj be a trajectory of A. Then, there exists i trajectories traj* on the
automata A* so that the concatenation of the i trajectories is traj.

This property is a logical extension of the previous properties. It shows that
an automata chain represents the set of trajectories of the automaton that is
obtained by reconstructing the chain.

4.2 Parallelized Computation

Let £a; = (AL, ..., AY) be the diagnosis of the period W; incrementally com-
puted. Let Ea(;41) be the diagnosis of the system during the window Wy ;.
Then, we have:

Enip1 = (A, ... AL AT with AT = 0BS™ @ MOD™ (3)

This result comes from the fact that MOD¥* = MOD™.

The advantage of this approach is that the local diagnoses can be computed
in parallel. However, if the set of states QP is huge, then MOD™ has a huge
number of initial states, and also A**!. The computation of A**! can then be
very expensive. It is thus necessary to limit as much as possible the set of initial
states in the diagnosis on a temporal window W?. This is the goal of the second
approach uses the incremental synchronization.

4.3 Incremental Synchronization

Definition 18 (Restriction).
Let A= (Q,E,T,1,F) be an automaton. The restriction of the automaton A by
the set I', denoted A[I'], is the automaton A’ = (Q, E, T,INI F).

Definition 19 (Incremental synchronization).

Let E4 = (AL, ..., A™) be an automata chain. Let Ay be an automaton. The
incremental synchronization of the automata chain £4 and As is the au-
tomata chain Ep, denoted E4 ® Ay and defined by Ep = (AL, ..., A%) with
Vie{l,...,n} so that:

- AL = A'® AF,
—Vie{2,...,n—1}, A= (Al @ AD)[F5 1 and
— AR = (A" ® A7) [F5 1]

The incremental synchronization restricts the automaton A% by the set of
final states of the previous automaton Agl.

Property 4.
Let E4 be an automata chain and Ay = (Q2, Ea, To, I, F5) so that Y ¢ Es. Then,
BD(Ea O A2) = B(Ea ® Ag).

180 A. Grastien, M.-O. Cordier, and C. Largouét

We note A" = (Q, B4, T4, I, F}). Let Ea, = (A, ..., A") be the diagnosis
of the system during the temporal window W;. It is possible to incrementally
compute the diagnosis A**! on the temporal window Wj,1:

Enip1 = (AL, ... AT AT with AT = (OBS™™ @ MOD™)[FY] (4)

This method enables us to limit the number of initial states of the local
diagnoses.

5 Conclusion

In this paper, we have shown that an automaton can be sliced and represented
by an automata chain. We explain the relations between these two representa-
tions and define the synchronization operation for each of them. Diagnosis is
usually formally defined as resulting from synchronization between the system
automaton and the observation automaton. We propose to replace the observa-
tion automaton by an automata chain, each automaton representing the obser-
vation emitted during the corresponding temporal window. It is then possible
to compute the diagnosis as an automata chain, each automaton representing a
local diagnosis for a given temporal window. We show that it is equivalent to
compute the global diagnosis for the global observation automaton. Moreover,
we show that this computation can be performed in an incremental way, and thus
more efficiently by taking profit of the already computed diagnoses to improve
the computation of the current one.

This work concerns the off-line case. The next step is to study the on-line case.
The incremental approach means computing a diagnosis for a given time, and
then extending it by taking into account the next temporal window. It requires
to be able to build, on-line and incrementally, the observation automata chain.
The main difficulties are to determine the adequate temporal windows and to
ensure that the slicing is correct whenever the future observations are unknown.

References

1. Baroni, P., Lamperti, G., Pogliano, P., Zanella, M.: Diagnosis of large active systems.
Artificial Intelligence 110 (1999) 135-183

2. Cordier, M.O., Thiébaux, S.: Event-based diagnosis for evolutive systems. In: 5th
International Workshop on Principles of Diagnosis (DX-94). (1994) 64-69

3. Barral, C., Mcllraith, S., Son, T.: Formulating diagnostic problem solving using
an action language with narratives and sensing. In: International Conference on
Knowledge Representation and Reasoning (KR’2000). (2000) 311-322

4. Console, L., Picardi, C., Ribaudo, M.: Diagnosis and diagnosability analysis using
PEPA. In: 14th European Conference on Artificial Intelligence (ECAI-00), Berlin,
Allemagne (2000) 131-135

5. Cordier, M.O., Largouét, C.: Using model-checking techniques for diagnosing
discrete-event systems. In: 12th International Workshop on Principles of Diagnosis
(DX-2001). (2001) 39-46

6.

7.

First Steps Towards Incremental Diagnosis of Discrete-Event Systems 181

Lamperti, G., Zanella, M.: Diagnosis of Active Systems. Kluwer Academic Publish-
ers (2003)

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Fail-
ure diagnosis using discrete-event models. In: IEEE Transactions on Control Sys-
tems Technology (CST-96). (1996) 105-124

Rozé, L., Cordier, M.O.: Diagnosing discrete-event systems : extending the “diag-
noser approach” to deal with telecommunication networks. Journal on Discrete-
Event Dynamic Systems: Theory and Applications (JDEDS) 12 (1) (2002) 43-81
errata 14 (1) (2004) 131.

Integrating Web Content Clustering into Web
Log Association Rule Mining*

Jiayun Guo, Vlado Keselj, and Qigang Gao

Faculty of Computer Science, Dalhousie University,
6050 University Avenue, Halifax, NS, Canada B3H 1W5
{jguo, vlado, qgggao}@cs.dal.ca,
http://www.cs.dal.ca/~{jguo,vlado,qggao}

Abstract. One of the effects of the general Internet growth is an im-
mense number of user accesses to WWW resources. These accesses are
recorded in the web server log files, which are a rich data resource for
finding useful patterns and rules of user browsing behavior, and they
caused the rise of technologies for Web usage mining. Current Web us-
age mining applications rely exclusively on the web server log files. The
main hypothesis discussed in this paper is that Web content analysis
can be used to improve Web usage mining results. We propose a sys-
tem that integrates Web page clustering into log file association mining
and uses the cluster labels as Web page content indicators. It is demon-
strated that novel and interesting association rules can be mined from
the combined data source. The rules can be used further in various ap-
plications, including Web user profiling and Web site construction. We
experiment with several approaches to content clustering, relying on key-
word and character n-gram based clustering with different distance mea-
sures and parameter settings. Evaluation shows that character n-gram
based clustering performs better than word-based clustering in terms of
an internal quality measure (about 3 times better). On the other hand,
word-based cluster profiles are easier to manually summarize. Further-
more, it is demonstrated that high-quality rules are extracted from the
combined dataset.

1 Introduction

Web Mining is an important application of data mining in the web environment.
The problems in this research area became very important due to the immense
size of the web resources and intensive user activity. The general area of Web
Mining is typically divided into the sub-areas of:

— Web Content Mining, which is concerned with the content of Web pages,

— Web Stucture Mining, concerned with the link structure of the Web, and

— Web Usage Mining, concerned with the patterns of user behaviour when
using the Web.

* This work is supported by NSERC.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 182-193, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Integrating Web Content Clustering into Web Log Association Rule Mining 183

Table 1. Different Approaches to Web Site Organization

Organized by | Server location Examples
(1) | Product www.microsoft.com | /windows, /games, /sql...
(2) | Location www.ibm.com /us, /ca/en, /cn, /jp...
(3) | Person www.cs.dal.ca / prof01, /“stydent03
(4) | Other forums.devshed.com | /showthread.php?p-2119#post211. ..

The data source for Web Usage Mining are typically web server log files. For
each user access, a log file includes information such as the user IP number,
time of access, file path, user browsing agent, returned status, and the size of
transferred data. Data mining on this data set can discover frequent patterns in
user access, but they are mostly content oblivious. The file path may be a content
indicator, but it may not be reliable. Although many Web sites are constructed
according to their content, there are also many others that are not. As shown
in Table 1,! the directory structure of a web site may be organized in different
ways.

Web site organization can be based on content such as product information ((1)
in Table 1), business locations (2), user space (3), and many other conceptual hier-
archies. If a Web site is organized according to user space, different directories may
contain similar content; e.g., same products or services provided at different places,
professors teaching the same class or sharing similar research interests. Also, with
the development of Web design techniques, more and more CGI programs are used
instead of the traditional static HTML files. In this case ((4) in Table 1), Web pages
are generated according to a set of input parameters. Typical examples would be
BBS/forum systems. In this case, it may be hard to make any inference about page
content based on the URL path.

In this paper we propose and evaluate an approach to integrate the content
of Web pages into mining of the Web server log files. We experiment with two
different clustering approaches to conceptually organize web pages, and then
use cluster labels in association rule mining from the Web log file. The cluster
labels represent content information, which is merged with the log file, giving an
integrated log file.

2 Related Work

Web Mining is categorized into three categories according to what part of the web
is mined [1, 2]: Web Content Mining [3], which focuses on the discovery of useful
information from the Web contents; Web Structure Mining [4], which attempts
to discover the model underlying the link structure of the Web; and Web Usage
Mining [5], which attempts to discover knowledge from the data generated by the

! For privacy reasons, the user information from the www.cs.dal.ca data is anonymized.

184 J. Guo, V. Keselj, and Q. Gao

Web surfer’s activity. Web site servers generate a large volume of data from user
accesses, which is used to mine knowledge about user browsing behaviour.

Web usage mining is still relatively isolated area from other two areas of Web
mining, even though it seems obvious that it is intrinsically related to the page
content. For example, the knowledge about user profiles is considered to be a
part of Web usage mining [3] and it is hard to learn something useful about
user profiles without consulting the content of the visited pages. In analyzing
user interaction and profile data, Web usage mining uses only the URL links
in the log file, for instance, as indication of the Web page contents. Some ideas
of integrating Web content information into Web usage mining have been ex-
pressed in some papers like [6, 7, 8]. However, most of these attempts still do not
use much of information from really looking at the Web pages contents. They
either assume that the URLSs strongly indicate the Web page contents [7], or use
information from log files, like user click streams, to build Web page models or
clusters [8]. There are also other attempts to improve the Web server log file
mining by integrating some semantic concepts [9, 10], which requires awareness
of the content of Web pages beforehand.

3 System Design
Figure 1 illustrates the overall design of our system.

3.1 Preprocessing

In the preprocessing step, there are two major tasks: re-formatting the log file and
retrieving Web pages to a local disk-space. Log file re-formatting involves revising
the log file to a suitable format for further steps. Each field in the log access log
file is revised in order to reduce the cardinality of the corresponding domain
set. E.g., the IP numbers are generalized to their sub-net mask consisting of the
first two numbers, the access time is discretized into a 4-valued set {morning,
afternoon, evening, night}, the dates are grouped into the seven days of week
bins, and the numerosity of file paths is reduced by using only their prefix sub-
paths. Web page retrieving involves reading the URL address parts of the log
file, retrieving the associated Web pages, and storing them to the local space.
Only hypertext and plain text files are considered in this phase.

3.2 Document Clustering

Before document clustering, several steps are performed including eliminating
HTML/XML tags, eliminating stop words and word stemming for word-based
clustering, and translating all letters into their lowercase version for character
n-gram-based clustering.

Document clustering requires vector representation of the documents. For
vector components, we use the standard TF-IDF measure, defined in the follow-
ing way [11]:

TFIDF(i, j) = tf(i, j) - (1 +log dfvé))

Integrating Web Content Clustering into Web Log Association Rule Mining

185

Original Web
log file

Preprocessing

Re—format Web Retrieve Web
log file pages

Retrieved
Web pages
stored
locally

Document
Clustering

Document
clusters

Integration

Integrated log file
Integration |———| with Web page
cluster label

Reformatted
log file

Web log mining

Association Rule Association Rule
Mining Mining
Rule from log file Rule from log file
without Web page with Web page
cluster label cluster label

|:| Process

D Input/Output Data Evaluation and Comparison

(j Interim Data

—= Data Flow

Fig. 1. System Architecture

186 J. Guo, V. Keselj, and Q. Gao

where tf(7,j) is the frequency of feature (term) ¢; in document d;, N is the
number of documents in the collection, and df(j) is document frequency, i.e., the
number of documents in the collection containing the term ¢;.

In the vector space model, one of the most common measures for similarity
between documents is the cosine measure, defined by [12]

dy - ds
[ldu[] - ||

where d; and dy are two document vectors. The measure returns values close
to 0 for very dissimilar documents, and high values close to 1 for very similar
documents. The k-means clustering algorithm requires a distance measure which
produces distance close to 0 for very similar documents and higher values for
dissimilar documents, we use the sinus distance measure [12]:

cos(dy,ds) =

sin(dy, ds) = /1 — cos(dy, d2)?

Another obvious option would be simply to use 1 — cos(di,ds), but a more
detailed analysis shows that the sinus measure is more appropriate since the k-
means algorithm relies on centroid calculation, which is a linear transformation,
and since sin(z)/z — 1 when x — 0.2

The well-known K-means algorithm is used for document clustering and its
pseudo code is given in Algorithm 1. A centroid is calculated as the arithmetic
mean and mass-center of all points in a cluster. There are typically three options
for a stopping criterion: We may stop when clusters settle. Since clusters may
oscillate instead of settling at a fixed point, there is a limit on the maximal
number of iterations. The third option is to observe a clustering quality measure
and stop when this measure reaches a local maximum. We use the fixed point
criterion with a limit on the number of iterations.

Algorithm 1 K-means
Partition object into k non-empty subsets randomly
repeat
Compute the centroids of the clusters
Assign each object to the cluster with the nearest centroid
until some stop criterion is met

The clustering quality is evaluated using either external quality measures,
which rely on some external knowledge such as a gold clustering standard of
a data set, or internal quality measures, which do not rely on any external
knowledge. Since our set of web pages is not labeled, we first use an internal
evaluation function to evaluate clustering. After using clustering results in the
web log association rule mining, we evaluate the final results manually, and this is

2 Another way of presenting the argument is to depict document clustering as clus-
tering of points at the surface of a unit n-dimensional sphere.

Integrating Web Content Clustering into Web Log Association Rule Mining 187

an external evaluation. However, unlike the internal evaluation, it is a qualitative
rather than quantitative evaluation.

For the internal evaluation, we use the internal evaluation function proposed
in [13] and defined as

m

N
Bl= =SB Y Flt) &

i=1

where E(t;) and E;(t;) are defined in the following way:

m; — 1 i

E(t) =1- —— log,, > Ei(t;)
=1

Ei(t;) = =108y, ., 11(fi +1)

In the equations above, N is the number of documents, m is the number of
clusters, E(t;) is called inter-cluster entropy, E;(¢;) is called intra-cluster entropy,
n;; is the number of documents including feature ¢; in cluster C;, fi mas is the
maximum frequency of feature t; in cluster C;, f; is the average frequency of
feature t; in cluster C;, and m; is the number of clusters in which feature ¢;
appears.

3.3 Integration

The integration step involves integration of the Web document cluster informa-
tion into log files. Two data sets are obtained for further mining: one is log_origin
with only the information obtained from the web log file, and the other is named
log_integ and it includes information from the web log file, integrated with the
cluster labels. In order to be able to interpret the results of the association rule
mining, the clusters are manually summarized and described by brief descriptive
paragraphs in plain language.

3.4 Association Rule Mining

In this last step, the Apriori association rule mining algorithm [14] is applied to
the two data sets obtained from the above steps.

The number of unique values of each field in the re-formatted log file is
limited, and all the values can be displayed as strings. They are then used as
items in the standard association rule mining terminology. Each different value
either is present or not, so it is treated as a Boolean value. Since the domain sets
of different fields are disjoint, we do not need to present field (attribute) names
when presenting the association rules. The purpose of this association mining
step is to discover the rules of co-occurrence and the implications underlying the
large amount of access records.

After applying association rule mining on the two datasets log_origin and
log_integ, two sets of rules were obtained from the datasets respectively. These

188 J. Guo, V. Keselj, and Q. Gao

two sets of rules are compared. The rules obtained from the dataset log_origin
are a subset of the rules obtained from the dataset log_integ, so we explore the
rules obtained from log_integ but not from log_origin to see whether they provide
any useful and novel information.

4 Results and Evaluation

We used an Apache log access file from the graduate Web server of the Faculty
of Computer Science at Dalhousie University, for a one-month period in October
2003. In this period, there were 161,499 access records producing a 230MB log
file. Using a widely used data set in the experiment would be beneficial for
comparative reasons with other published results, however we were not able to
locate such dataset that would involve both web pages and the web log data. In
other published work, this scenario is often seen, were the experiments are based
on a local departmental web server.

All the experiments are executed on a Sun Solaris server at the CS Faculty
of Dalhousie University. The server type is SunOS sparc SUNW, Sun-Fire-880.
The system was implemented using Perl (preprocessing, document clustering,
and integration) and C++ (Association Rule Mining).

4.1 Cluster Summarization

In the document clustering step, after the K-means algorithm is performed, the
frequencies of features in each cluster are obtained. From these, the most fre-
quent key features of each cluster are extracted and used to manually summarize
the major topic of each cluster. In the manual summarization, beside the set of
the most frequent features, some sample Web pages from a cluster are examined
in order to produce a reliable cluster summary. Even though we could not suc-
cessfully use any existing summarization tool, a part of future work is to make
a further attempt to use this option.
The analysis of these summaries produced to following observations:

(1) When the number of clusters k is relatively large (k=12 for k-means) with
word representation, some different partitions share same or similar topics.

(2) When £ is relatively small (k=8 for k-means) with word representation,
some of important clusters, which appear when k is larger, were not partitioned
from the others.

(3) The optimal clustering summaries are obtained for k¥ = 10 with the word
representation.

(4) When the character n-gram representation is used, it is very difficult to
summarize clusters manually.

4.2 Internal Cluster Evaluation

The results of the internal cluster evaluation using equation 1 are shown in
Table 2. We can see that k=10 produced the best results for both word and
n-gram representation, which is an interesting result since it coincides with our
analysis based on cluster summaries. Character n-gram representation produced

Integrating Web Content Clustering into Web Log Association Rule Mining 189

Table 2. Comparison of Document Clustering

Word-rep | Ngram-rep
K=8 |0.00953 |0.03478
K=10{0.01183 |0.036515
K=12]0.01077 |0.03556
K=140.01032 |0.03427

significantly better results (3 times) than word representation. However, since it
is much harder to summarize character n-gram based clusters than word-based
clusters, so we chose to proceed with the word clusters to the association rule
mining step. An important open question is how to summarize clusters based on
their character n-gram profiles. If this problem could be successfully solved our
hope is that we would obtain even better association rules.

4.3 Association Rule Mining Evaluation

In the association rule mining step, after applying Apriori on both datasets of
log_origin and log_integ, we got two lists of association rules. Table 3 shows the
number of association rules obtained from the two datasets.

Table 3. Number of rules obtained

[support, confidence] | Log_origin | Log_integ
(2%, 30%] 64 203
2%, 50%)] 20 81
(1%, 50%) 37 187
(1%, 60%) 9 58

The integrated log file produce three to four times more rules than the original
log file. As all the attributes in log_origin are also included in log_integ, it is
obvious that the rules from the latter are also included in those from the former.
Since the number of access records is very large, we mine rule with a support
threshold of only 1 or 2%, however the confidence threshold is kept at higher
levels of 30, 50, and 60%.

Table 4 and Table 5 list some rules obtained from the two datasets, log_origin
and log_integ respectively. The left side columns display the rules obtained from
program, while the right side columns display the same rules interpreted in the
plain language. Since all the rules obtained from log_origin are also included in
the rules obtained from log_integ, in Table 5 we show only the rules that are not
obtained from log_origin.

We can make interesting observations about the web site usage based on the
extracted rules. According to Table 5, the rules indicate when and from where

190 J. Guo, V. Keselj, and Q. Gao

the access queries occurred, who visited, and what kind of information was re-
quested. These rules provide information which can be used in various applica-
tions, including web site organization, Web content distribution, and analysis
of user access behavior. For example, from the rule “/“prof33 = ERROR”, we
would conclude that prof33 had changed a lot of his web pages, and we may
suggest an update or creation of redirection Web pages under his domain. The
rules like “clusterb = /“profll”, “cluster6 = / prof07”, provided information
about the user domains that provide the content of a certain category or certain
topic. The rules such as “24.222 = cluster7” and “156.34 = cluster7” tell us
about the topics of interest of visitors from certain internet domains. These rules
are related to the document cluster labels, i.e., the web contents, and were not
included in the results from the conventional data provided in the web log file
(log-origin).

Table 4. Association Rules from log_origin

K=10 with Word Representation
Support=1% Confidence=50%

Association Rules Rules in plain language
/ profl2 = 129.173 [10, 53] A majority of accesses to user prof12’s web
pages are from the CS building log-ons
129.173 = afternoon [20, 51] Over half of the accesses from CS building

were in the afternoon;

/" profl2 A Tue = afternoon [2, 56] | Accesses on Tue and Wed to user prof12’s

/ profl2 A Wed = afternoon [2, 52] | web pages occurred mainly in the afternoon;

From the original dataset, we obtained the rules that typically describe cer-
tain visitor groups that are interested in certain professors’ web pages. However,
one single professor’s web site may contain different topics. From the integrated
dataset, we obtained the rules that contain information about visitor groups that
are interested in certain kinds of topics. Pages with similar topics may exist in
different professors’ directories, and these rules are not found from the original
dataset.

Therefore, we can conclude that we demonstrated that some useful rules are
obtained from integrating web document clusters and web log files. These rules
are related to the content of web pages, and provide information that can be
further used for user profiling and web site evaluation and improvement.

5 Conclusion and Future Work

In this paper, a novel approach to Web log file mining combined with the in-
formation from automatic Web page clustering is presented. The methods for

Integrating Web Content Clustering into Web Log Association Rule Mining 191

Table 5. Association Rules from log_integ

K=10 with Word Representation
Support=1% Confidence=50%

Association Rules Rules in plain language
cluster5 = /“profll [3, 51] A majority of Java programming pages are
from user prof11.
/" profll = cluster7 [6, 54] A majority of user profi1’s web pages are
personal or course information pages.
cluster6 = / prof07 [3, 86] User prof07 provides over eighty percent of
/" prof07 = cluster 7 [10, 59] administration pages, however more than

half of user prof07s web pages are
personal or course information pages.

/ prof33 = ERROR [4,81] User prof33 has deleted or modified many
of his web pages since Oct. 2003.

/ profl3 = clusterl [5,78] User prof18 has many empty pages.
clusterl = /"profl3 [5,67]

129.173 = cluster7 [21,51] Over 50% of accesses from outside
142.177 = cluster7 [3,52] CS building are for general information.

156.34 = cluster7 [2,55]
24.138 = cluster7 [1,56]
24.215 = cluster7 [1,54]
24.222 = cluster7 [7,55]
24.224 = cluster7 [3,53]
/" profl0 A afternoon = cluster?7 [1,53] | A majority of accesses to user prof10’s

web pages in afternoon are for general

information.

/" profl2 A cluster0 = 129.173 [1,60]
/" profl2 A 24.222 = cluster7 [1,62]

document clustering are used: word-based and character n-gram based. The K-
means algorithm was used in web page clustering. After manually summarizing
clusters obtained form the web log file, and from the integrated data file, the
Apriori association rule mining algorithm is applied. Several evaluation results
are produced: an “optimal” number of clusters is found based on manual summa-
rization and cluster analysis, and it was confirmed that this number of clusters
is locally optimal in terms of the internal quality measure. Furthermore, it was
demonstrated that some interesting content-related rules can be discovered from
the integrated web log data, while they could not be discovered using only the
standard web log data. These rules provide useful information related to the
web usage mining, and can be useful in tasks of the web site organization, web
content distribution, customer behaviour profile, and similar.

192 J. Guo, V. Keselj, and Q. Gao

The designed system is a proof-of-a-concept prototype of the idea of combin-
ing the web content mining and web usage mining, and there are many obvious
aspects in which it can be improved:

— The algorithm should be improved to handle larger data sets.

— More types of files should be analyzed, beside HTML and plain text only.

— Automatic summarization technique should be applied.

— Generating summaries for n-gram based clusters would open the doors of
using better clustering results in rule mining.

— The use of concept hierarchies could improve quality or association rule
mining.

— The data mining functionalities other than association rule mining could be
used in web log analysis.

Acknowledgments

We would like to thank Haibin Liu and anonymous reviewers for providing useful
comments. The authors gratefully acknowledge the financial support from the
Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Madria, S., Bhowmick, S., Ng, W., Lim, E.: Research issues in web data mining.
In: Proceedings of Data Warehousing and Knowledge Discovery, First International
conference, DaWaK’99. (1999) 303-312

2. Borges, J., Levene, M.: Data mining of user navigation patterns. In: Proc. of
WEBKDD’99 ws. on Web Usage Analysis and User Profiling. (1999) 92-111

3. R.Kosala, H.Blockeel: Web mining research: A survey. ACM SIGKDD 2 (2000)
1-15

4. Chakrabarti, S., Dom, B., Gibson, D., Kleinberg, J., Kumar, S., Raghavan, P.,
Rajagopalan, S., Tomkins, A.: Mining the link structure of the World Wide Webx.
IEEE Computer 32 (1999) 60-67

5. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Information and pattern dis-
covery on the world wide web. In: Proc. of the 9th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI’97). (1997) 558-567

6. Mobasher, B., Dai, H., Luo, T., Sun, Y., J.Zhu: Integrating web usage and content
mining for more effective personalization. In: Proc. of the Intl. Conf. on Ecommerce
and Web Technologies (ECWeb). (2000) 165-176

7. Kato, H., Nakayama, T., Yamane, Y.: Navigation analysis tool based on the cor-
relation between contents distribution and access patterns. In: Proc. of the Web
Mining Workshop KDDO00. (2000) 95-104

8. Ypma, A., Heskes, T.: Categorization of web pages and user clustering with mix-
tures of hidden markov models. In: Workshop on Web Knowledge Discovery and
Data mining (WEBKDD 2002). (2002) 31-43

9. Jin, X., Zhou, Y., Mobasher, B.: A unified approach to personalization based on
probabilistic latent semantic models of web usage and content. In: Proc. of the
AAAT 2004 Workshop SWP’04. (2004) pp. 26-34

Integrating Web Content Clustering into Web Log Association Rule Mining 193

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Eirinaki, M., Lampos, C., Paulakis, S., Vazirgiannis, M.: Web personalization in-
tegrating content, semantics and navigational patterns. In: ACM Web Information
and Data Management Workshop. (2004) 72-79

Aslton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24 (1988) 513-523

Miao, Y., Keselj, V., Milios, E.: Comparing document clustering using n-grams,
terms and words (2004)

Jo, T.: Evaluation function of document clustering based on term entropy. In: Proc.
of 2nd International Symposium on Advanced Intelligent System. (2001) 95-100
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers (2001)

M.Steinbach, G.Karypis, V.Kumar: A comparison of document clustering tech-
niques. In: Proc. of the Text Mining Workshop, KDDO00. (2000)

Pandey, A., Srivastava, J., Shekhar, S.: A web proxy server with an intelligent
prefetcher for dynamic pages using association rules. Technical Report TR-01-004,
Department of Computer Science, University of Minnesota (2001)

Porter, M.: An algorithm for suffix stripping. Program 14 (1980) 130-137
Etzioni, O.: The World Wide Web: Quagmire or gold mine. Communications of
the ACM 39 (1996) 65-68

Saltonandand, G., Wong, A., Yang, C.: A vector space model for automatic index-
ing. Communications of the ACM 18 (1975) 613-620

Punin, J., Krishnamoorthy, M., M.J.Zaki: Mining web log data across all customers
touch points. In: Web Usage Mining—Languages and Algorithms, WEBKDDO01
Workshop. (2001) 88-112

Privacy Compliance Enforcement in Email

Quintin Armour, William Elazmeh, Nour El-Kadri,
Nathalie Japkowicz, and Stan Matwin*

School of Information Technology and Engineering, University of Ottawa, Canada
{garmour, welazmeh, nelkadri, nat, stan}@site.uottawa.ca

Abstract. Privacy is one of the main societal concerns raised by critics of the
uncontrolled growth and spread of information technology in developed soci-
eties. The purpose of this paper is to propose a privacy compliance engine that
takes email messages as input and filters those that violate the privacy rules of
the organization in which it is deployed. Our system includes two main parts: an
information extraction module that extracts the names of the sender and recipi-
ents as well as sensitive information contained in the message; and an inference
engine that matches the email information against a knowledge base owned by
the organization. This engine then applies compliance rules to the information
obtained from the extraction and database matching steps of the process. This
prototype is currently being developed for a university setting. In this setting, it
was shown to obtain a precision score of 77%. The next step of our research will
be to adapt our system to the context of a health organization, where privacy rules
are more complex and more sensitive.

1 Introduction

Privacy is one of the main societal concerns raised by critics of the uncontrolled growth
and spread of information technology in developed societies. On the one hand, the com-
plexity of the modern information systems maintaining our personal data is constantly
growing. On the other hand, these systems are often accessed by personnel who are
not sufficiently sensitive to the issue of personal data privacy. The fact that private in-
formation is in the hands of other people introduces the possibility of human error. To
bring order to this complex privacy landscape, most countries have introduced, in the
last several years, data privacy laws. In Canada, the main law is the Privacy Information
Protection in Electronic Documents Act of 2000. Recently, Ontario has introduced Bill
31 to regulate the issues of privacy and information access in the healthcare sector. This
legal framework is normative, and as such, it addresses privacy violations after they
have been committed. We believe that IT, in general, and Al in particular, can assist in
the development of tools that will detect privacy violations as they happen. Here, we
focus on email exchanges initiated from an organization and worry about information
breaches with respect to the privacy rules of that organization. Several factors contribute

* Stan Matwin is also affiliated with the Institute of Computer Science, Polish Academy of
Sciences, Warsaw, Poland.

B.Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 194-204, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Privacy Compliance Enforcement in Email 195

to the fact that information breaches are very likely. The quick pace of information ex-
changes is the first such factor: lots of information is being exchanged, and emails are
often sent in a hurry. People put less thought into the content of their messages or in
the nature of attachments than they do in the slower, manual correspondence process.
Another factor relates to the complexity of the matter: privacy rules can be numerous,
unobvious (legal vs. lay language) and very specific, and thus hard to interpret for the
variety of staff handling personal information, as is found in a hospital. To illustrate this
point, consider that Ontario’s Bill 31 is 116 pages long.

There is alot of interest in offering such capabilities, but most solutions do not seem to
go beyond the lexical level for detecting and matching data against encoded privacy rules.
Despite the clear potential, little has been done to employ knowledge-based techniques
in developing privacy-aware solutions. For instance, Vericept (vericept.com) detects the
presence of social security numbers, credit card numbers, and other specific identifiers
in messages, yet it is clear that detection of privacy violations often requires inference.
Privacy rules must be connected with the knowledge about the people and the types of
information involved. Itis this added degree of complexity which has motivated our work.

In this paper we describe the research and development of a compliance engine
that would, once installed in an organization, warn employees of the potential privacy
breaches their email messages may cause. The idea is to flag the various violations and
hold the message until the violations are inspected (and potentially corrected) by a hu-
man operator. We give an overview of the various components required for such a system
and discuss some of the technical details related to their interaction. The current proto-
type targets the academic environment, where emails are exchanged between students,
professors, and administrators, each having different access rights to private information.
The final goal of our work is to port this research to the healthcare environment. We are
collaborating with The Ottawa Hospital (TOH) on this application of the research.

2 The Envisioned Engine

As mentioned, the compliance engine described in this paper is conceived for a uni-
versity setting. In such an organization, different people are allowed access to different
pieces of information about other people according to the role they play in the organiza-
tion. These access rules are not always clearly set which can result in frequent privacy
violations. For this reason, languages for the internal privacy practices of enterprises
and for technical privacy enforcement must offer possibilities for the fine-grained dis-
tinction of users, purposes, data categories, purposes and conditions as well as clear
semantics. Our engine offers a solution which is consistent with that of the standard
EPAL language [1] that addresses all of the aforementioned elements. For illustration
purposes, we show that all the elements of the rules addressed in this engine can be
represented with EPAL syntax and can take advantage of the XML representation.

Our system considers some of the rules taken from the University of Guelph Privacy
Policy on the release of student information [2]. The subset of rules implemented in our
system is presented in Section 2 along with an EPAL representation.

The following is an example of an email that violates a student’s (Student B) privacy
in the context of the set rules. The email sender (Professor A), the program’s advisor

196 Q. Armour et al.

who is entitled to know the student’s personal information such as his home address and
phone number, has cc’ed this information to a professor (Professor C') who will only be
teaching the student a course and is not entitled to view such information.

From: AGuoguelph.ca

To: B@uoguelph.ca

CC: C@uoguelph.ca

Subject: Please Confirm Correct Information

Dear Student name (nameB),
This message is to confirm your enrollment in CIS 2520,
your instructor will be professor name (nameC). Also,
for our records, could you please confirm your current
contact information below:

home_address (address)
home_phone (phoneNum) .

Thank you kindly,
program_adviser_name (namel)

Our system blocks A’s message to C, but it can be sent to B since B owns the personal
information in the message. Furthermore, the system informs A of the fact that his
message was not sent to C' and indicates which rules of the policy were violated.

Building such a compliance engine presents a number of challenges. First, the lan-
guage used in the drafting of legal documents is often obtuse and difficult to understand.
It needs to be interpreted with a certain amount of skill, and then translated into a logical
language appropriate for computer processing. Second, the database has to be organized
in a way that allows for efficient access to and processing of data and rules. As well, the
database should be modular enough so that new rules as well as new facts can be added
and removed easily. Finally, the information extraction engine is difficult to implement
given the fact that emails are expressed in free-form text and do not follow the types of
schemas usually relied upon in typical information extraction tasks [3]. Though some
information such as student and phone numbers will be easy to extract, other informa-
tion pertaining to the context in which these simpler types of information occur will be
extremely difficult to assess.

In the final version of the prototype we will incorporate the lessons learned from
earlier work on Al and Legal reasoning [4], as well as Information Extraction [5]. Also,
as we include other information types for extraction, the methods described in [6] and
[7] will become useful.

3 Our Prototype
3.1 Overall Design

The main objective of the prototype is to develop the building blocks necessary to per-
form privacy compliance enforcement in email. The first element to consider is how

Privacy Compliance Enforcement in Email 197

this system, or compliance engine, will interface with its environment. As shown in
Fig. 1, for a given enterprise, the system has three elements as inputs: 1) the email, 2)
the privacy policy and 3) the database. The only output of the system is whether or not
the email conforms to the policy restrictions.

The email is a well-known input type. It is obtained by diverting the flow of emails
handled by a mail server. These emails are segmented into the two major parts: header
and body. Within each email, the headers of quoted reply chains can be used to establish
context and help resolve pronouns.

The privacy policy is the starting point for the compliance engine. The policy can
either be expressed in plain English or using IBM’s XML-based language EPAL. The
benefit to using EPAL is that the privacy policy would be more directly expressed in
terms of rules and therefore more easily interpreted. Once the policy has been expressed
as a set of rules, the component terms can be extracted from a document and violations
detected.

Privacy
Policy

Y

. _ | Compliance
Email > Engine

A

Database

Fig. 1. An overview of the proposed system. The compliance engine is the element of interest

The database is the place where all the domain information is stored. For all types
of domains, a database of items such as employees and customers is usually present.
For the academic domain, this includes information about professors, students, admin-
istrators, courses, etc. This database is used to help in the identification of the entities
extracted by the entity extraction module discussed below.

The core of the compliance engine is composed of two major components. The first
is the entity extraction module and the second is the privacy verification module. Each
will now be discussed in turn.

The entity extraction module is needed to pull the elements required by the privacy
verification module from the email. These elements are delivered to the verification
module in the form of two lists. The first list is composed of the recipients and sender
and the second contains all of the potentially private information in the email.

The privacy verification module uses the entities extracted by the entity extraction
module and verifies their consistency with the database. First, the recipients and sender
are identified. Once they have been identified, the types of information that each has
access to is considered. If there are any elements for which one of the parties involved
does not have access, it constitutes a violation of the privacy rules. If a violation is

198 Q. Armour et al.

detected then the email is flagged and the compliance engine makes the decision of
whether to bounce, copy, divert or drop the email.

3.2 Detailed Description of the Prototype

In this section we describe the design and scope of the prototype outlined in the previous
section. The focus is primarily on the privacy verification module because it is in this
module where the reasoning (to decide whether an email is in violation of the privacy
policy) is performed. The entity extraction module is essentially a tool which enables its
operation. At this stage in the development, the extracted elements are relatively simple
and will become more interesting as the rules become more abstract. The details of the
extraction module are first presented, followed by those of the verification module.

At present, the system is only concerned with protecting the privacy of the elements
in the database. As such, the task of the entity extraction module is to identify those
items of interest in the source email documents. We are currently working to extend
the system to consider the privacy of more abstract concepts. Although it complicates
the information extraction module, the process is modular allowing more sophisticated
methods to be incorporated as needed. In its current form, the system knows what it
is looking for, and the challenge comes from the fact that the elements can present
themselves in many different forms. The first task it performs is to take from the email
header, the email addresses (and names if available) of the sender and the recipients.
Since this module resides on the same level as the mail server it has access to all email
header information, including bcc. The next step is to extract the information available
from the body of the email. In the academic domain, the types of information found in
the body of the email are for example, names, phone numbers, social insurance num-
bers, student numbers, dates of birth, addresses, etc. In order to extract these elements
from the body of the email, we work backwards from the database, identifying different
possible formats for each type of entity. This extraction can be performed using finite
state automata with high accuracy. In later versions, the data will not necessarily be
available in the database and more evolved information extraction techniques will be
employed. The final step performed generates a series of queries which are then deliv-
ered to the privacy verification module. This module then replies as to whether or not
privacy was compromised for the particular email.

The privacy verification module' we developed is designed to accommodate the
storage and processing of three layers of information. The first layer is the data whose
privacy the system is trying to protect against privacy breaches. The data here, are the
elements in the university domain described above. The second layer describes the ad-
ditional knowledge needed to assist in the process of determining whether or not a
recipient is granted access to the data in the email. This additional knowledge describes
the ownership and the type of data being released in allowing the email to be delivered.
The third and final layer describes the rules which restrict access to the data being con-
trolled by the system. These rules define the access levels and recipient privileges for

! The prototype is implemented in Prolog, specifically in SWI-Prolog version 5.2.6 running on
a WindowsXP Professional machine. The database, functions, and rules are implemented as
Prolog facts, predicates and rules.

Privacy Compliance Enforcement in Email 199

the data in the email based on its ownership and information types. Such access rules
are extracted directly from the privacy policy adopted by the university.

In the following sections, we describe the structure of each of the three layers of
the database system with an emphasis on the process of developing information access
rules based on the privacy policy.

The Data Layer. The database contains several tables and entities that describe each
of the following:

1. Personal Details (e.g., ids, names, addresses, etc. of all individuals involved in uni-
versity activities, such as, students, faculty, and staff)

Employee Details (e.g., ids, rank, status etc., for employees of the university)
Course Details (e.g., codes and titles of courses offered at the university)

Program Details (e.g., program code and department offering the program)
Academic Details describes how the different database entities relate to each other.
(e.g., what courses a particular student taking or a particular professor teaching)

e W

This database can be implemented to reflect the complete structure of a university;
however, our prototype system is designed as a proof of concept consisting of an imple-
mentation of the essential parts of the database system. The purpose is to demonstrate
the effectiveness of our methods in preserving privacy. Given a comprehensive imple-
mentation of the database, the privacy protection methodology described here can be
extended to a large scale database information system.

Information Types and Ownership Rules Layer. In order to define information ac-
cess rules to a data entity D, we must introduce additional knowledge to assist in the
decision of whether or not to make D accessible to the user. This additional knowledge
must specify the ownership and information type of D.

A data entity D is defined as a primitive Prolog fact or item? (a Prolog term listed
in the database). For instance, the arguments of the predicate personal_details are each
considered as separate data entities. For each data entity we define Prolog rules to de-
termine a type description and an owner identification number. For example, an iden-
tification number is a data entity of the type employee_id which identifies the person
who owns this personal record. Similarly, the name argument is a data entity of type
personal_name owned by the person identified by the identification number and so on
for the remaining arguments.

Therefore, in addition to storing the data, the database also stores rules about the
type descriptions for each of the data entities and their owners. The privacy policy
description directly affects the definitions of the information types and ownership. Laws
and regulations govern who owns what type of information. In our case, as mentioned
previously, we use the information privacy policy in [2] to extract the following rules to
determine data information type and ownership:

1. Identification numbers, personal names, home addresses, etc. are information types
owned by the individuals who own the particular personal record.

% We are working to transfer the data to an SQL database.

200 Q. Armour et al.

2. Employee identification numbers, rank, and status are information types owned by
individuals who are listed as being employed by the university.

3. Employee email addresses, office phone numbers, and names are information types
owned by the university, which provides public access to the list.

4. Course codes and titles, program codes, degree titles, and departments are informa-
tion types owned by the university.

5. Student registration information, listed by student names only, is also information
owned by the university. This ownership setting allows for anyone to verify whether
or not a student is registered at a university.

6. Student email addresses are information types owned by registered students.

Given the above information and ownership types, we can define information access
rules to grant users access to the data based on privileges defined by the privacy policy.

Information Access Rules Layer. While they are extracted directly from the privacy
policy, access rules must be expressed in a form suitable for representation in the
database system. Our database system consists of tables and functions that provide
users access to information stored in it. However, we assume that users may not ac-
cess the general functions of the database directly but rather can only access functions
designed to comply with our access rules. Therefore, given the privacy policy in [2], we
implemented the following rules to control user access to the database:

1. Students registered in a program at the university are allowed access to public e-
mail addresses, phone extensions, and names of employees in the university. In fact,
such information is considered public information released by the university.

2. Active employees of the university who are teaching courses in a particular sem-
ester can be granted access to the identification numbers, names, and email ad-
dresses of only those students enrolled in a course they teach.

3. Student advisers and university staff members are permitted access to any informa-
tion regarding any student (personal or academic).

4. Any information owned by the university is considered public information and can
be released to the public. This rule may not be totally realistic, but given the scope
of our prototype system, we felt it was reasonable. This includes any course or
program related information, student confirmation of registration, and employee
contact information.

5. Any individual has the right to access their own personal or non-personal data.

Please note that the above rules can be easily scripted in EPAL. Following is a transla-
tion of the first rule into EPAL. Similarly, all the other rules are represented and are not
included in this paper due to space limitations.

<rule id = "rl" ruling= "allow">

- <user-category refid = "registered-students"/>

- <data-category refid "non-personal-email-address"/>
- <data-category refid "phone-extension" />

- <data-category refid "name" />

- <purpose refid = "any-purpose"/>

- <action refid = "access"/>

Privacy Compliance Enforcement in Email 201

Privacy Breach Detection in a Document. To complete the picture, the database now
contains data entities, their ownership and information types, and rules to restrict their
access. These access rules are consistent with the ownership properties as described in
the privacy policy. Our system can now apply the following process to an email docu-
ment in order to identify the existence of a privacy breach. The first two are provided
by the entity extraction module and the third is performed by the privacy verification
module.

1. Obtain the list /Ds = [identification numbers of individuals receiving or sending
the email document]

2. Obtain the list D = [data entities of interest appearing in the document]

3. For each tuple (id, d), where id is in I Ds and d is in D, check for the existence of
a privacy violation by applying all appropriate access rules to the tuple (id, d). If
any such rule denies ¢d access to d, then there exists a privacy breach.

Our system reports all privacy violations by indicating the identification of the individ-
ual attempting the access and by stating the data, the information type, and the identifi-
cation of the owner of the data entity D.

A Complete Example. Consider the email example presented in Section 2. The email
was sent from A to B and copied to C. The database stores information about A, B,
and C. For instance, A is a program adviser at the university and has access to all
information regarding the student B. C' is a faculty member who teaches a course in
which student B is enrolled. C' is not permitted to view any personal information for
student B. In this case, our system will build the two lists:

1. IDs =[idA, idB, idC'] using a mapping between identifiers and email addresses
of A, B, and C found in the database.

2. D = [email(A), email(B), email(C'), name(nameA), name(nameB), name(name-
(), course(cis2520), address(address), phone(phone Num)] as extracted from the
email text.

Then, the system will determine the privileges for each identifier in / Ds and whether
these privileges enable access to each of the data entities in the list D. Access privileges
are determined once the system resolves the information and ownership types for each
of the data entities in the list D.

Although, ¢dB is enrolled in a course taught by ¢dC, and idC' is granted access to
1dB and name(nameB), our information access rules identify two breaches of privacy
by idC'. He or she is accessing the address(address) and the phone(phoneNum) of
1dB. Therefore, the output for the first violation will be:

check_violation (idC, employee_id, phone (phoneNum) ,
personal_phone_number, idB)

where idC' is the user’s id of type employee_id. He or she is attempting to access
phone(phone Num) which is of type personal_phone_number and is owned by ¢dB.

202 Q. Armour et al.

Similarly, the output for the second violation is:

check_violation (idC, employee_id, address (address),
personal_home_address, idB)

where idC' is the user’s id of type employee_id. He or she is attempting to access
address(address) which is of type personal_home_address and is owned by idB.

4 Experimentation — Semi-automatic Processing

In this section, an evaluation of the system prototype is presented. First we describe the
prescribed methodology and then present the results and analysis.

4.1 Experimental Setting

The following steps describe the experimental setup and methodology.

1. Obtain a set of actual email exchanges from one of the authors. This set is composed

of 407 emails from the incoming mailbox, with 266 containing at least one of the

information types of interest.

Extract the potentially private information.

Map this information to the non-sensitive elements in our hypothetical database.

Automatically generate a set of queries to pose to the system.

Report how many of the introduced violations were detected and how many non-

violations were detected.

6. Introduce 20 privacy violations to non-violating emails. Craft these insertions such
that a range of possible privacy violations are covered. Repeat steps 2-5.

bl

4.2 Experimental Results

Here we present the results and analysis for the methodology described above. In the
original 266 emails, 44 violations were detected. Of these, 34 were actual violations and
10 were wrongly identified as violations resulting in an overall precision of 34/44 or
77%. The reason for these 10 errors was due to the extraction process. It had identified
a teaching assistant and a mass-mail list as external entities and was declaring, since
student information was present, that a violation had occurred. Although these errors
could be repaired by adding information to the database, the issue of data consistency
was raised. In other words, by relying on the database to identify the entities present,
we need to ensure that the database has accurate information. Also of note here is the
number and type of violations detected. Although the number of violations was fairly
significant (~13%), they were primarily of one type. The most common explanation
for a violation was that a professor was allowed to see the student number of a student
he or she was not teaching. This unintentional release of information is considered a
breach of student privacy. Given that the task was performed using emails from a single
individual, it was logical that we only saw one type of violation repeated several times.
This fact led to a recall score of 100%. As more abstract types of privacy violations are
introduced to the system this number is expected to fall. For future experiments, we will

Privacy Compliance Enforcement in Email 203

need to use emails from several people in order to increase the variety and number of
violations.

As for the modified set of emails from step 6, all of the introduced violations were
detected. For each, the correct reason for the privacy violation was identified. This result
was expected as the inserted violations were all in the format expected by both the
extraction module and the privacy verification module.

5 Conclusions and Future Work

The purpose of this paper was to present the prototype we constructed for privacy com-

pliance enforcement in email. We described the intended functionality of our software,

its overall organization, the details of its implementation and we evaluated its perfor-

mance on a set of real and modified emails. The system was shown to perform admirably

well in the real-world setting for which it was created, obtaining a precision of 77%.
Our experience, thus far, suggests several improvements to our design:

1. The information extraction step can be simplified by considering the rules more
closely. Considering the scenarios where proper names should not be disclosed can
reduce the need for this more difficult step. In other words, only do name recogni-
tion if other information types are present to warrant it.

2. The extraction step can be extended to allow for partial matches to be extrapolated
in order for them to match elements in the database. A probabilistic approach is
needed to resolve whether or not partial entity A is the same as entity B described
in the database.

3. The privacy verification module needs to be less tied to the database. This greater
separation will make it easier to augment the system to include items such as stu-
dent grades. As only final grades would be stored in the database, the detection of
these must be done independently of the database. The owner of the grade would
also need to be specified “on the fly” so to speak. The system needs to be able to
handle this situation and would require more sophisticated text processing tech-
niques.

Although our current system was implemented in a university setting, our ultimate
goal is to port the prototype system to a hospital environment. The system would help to
protect the privacy of patients (and personnel) from potential disclosure. As email be-
comes a more and more ubiquitous means of communication, some form of protection
against privacy leaks becomes necessary. Imagine for instance an email message spec-
ifying the treatment of a patient, sent from one physician to another, and copied to the
hospital pharmacy so that specific drugs could be administered as part of the treatment
plan. If, inadvertently, an external pharmacy is copied on this message, a potentially
serious privacy breach will occur, by releasing patient’s name, condition, and treatment
to a commercial organization.

Acknowledgements

The authors acknowledge the support of the Natural Sciences and Engineering Council
of Canada, the Research Partnership Program of the Communications and Information
Technology Ontario, and the cooperation of The Ottawa Hospital.

204 Q. Armour et al.

References

1. Paul, A., Hada, S., Karjoth, G., Powers, C.: Enterprise Privacy Authorization Language v1.2.
IBM (2003) http://www.w3.org/Submission/EPAL/.

2. University of Guelph: Departmental Policy on the Release of Student Information. (1996)

3. Ciravegna, F., Dingli, A., Petrelli, D., Wilks, Y.: User-system cooperation in document an-
notation based on information extraction. In Gomez-Perez, A., Benjamins, V.R., eds.: Pro-
ceedings of the 13th International Conference on Knowledge Engineering and Knowledge
Management. Lecture Notes in Artificial Intelligence 2473, Springer Verlag (2002)

4. ICAIL-2001: Workshop on Al and Legal Reasoning. (2001) http://www.cs.uu.nl/people/
henry/workshop2.html.

5. Hersh, W.R.: Information Retrieval: A Health and Biomedical Perspective. Springer Publish-
ers (2003)

6. Cohen, W., Sarawagi, S.: Exploiting dictionaries in named entity extraction: Combining semi-
markov extraction processes and data integration methods. In: KDD 2004. (2004)

7. Borkar, V.R., Deshmukh, K., Sarawagi, S.: Automatic segmentation of text into structured
records. In: Proceedings of the ACM SIGMOD Conference. (2001)

Towards an Ontology-Based Spatial Clustering
Framework

Xin Wang and Howard J. Hamilton

Department of Computer Science
University of Regina
Regina, SK, Canada S4S 0A2
{wangx, hamilton}@cs.uregina.ca

Abstract. Spatial clustering is an important topic in knowledge discovery
research. However, most clustering methods do not consider semantic
information during the clustering process. In this paper, we present
ONTO_CLUST, a framework for ontology-based spatial clustering. Using the
framework, spatial clustering can be conducted with the support of a spatial
clustering ontology. As an illustration, the framework is applied to the problem
of clustering Canadian population data.

1 Introduction

Spatial clustering is an important topic in knowledge discovery research. It can be
used to find natural clusters (e.g., extracting the type of land use from the satellite
imagery, merging regions with similar weather patterns), to identify hot spots (e.g.,
epidemics, crime, traffic accidents), and to partition an area based on utility (e.g.,
market area assignment by minimizing the distance to customers). In spite of the
importance of spatial clustering, most existing clustering algorithms do not use
semantic information during the clustering process. Typically, to create clusters, a
user creates a flat file corresponding to a set of data objects and runs a clustering
algorithm. A flat file is a sequence of lines, with each line containing values for all
attributes for one data object, separated by tabs. The user specifies the parameters for
the clustering algorithm, such as the number of clusters k for the k-Means method.
Then the clustering algorithm partitions the data objects into clusters and outputs the
results. Current clustering methods do not separate the semantics of the data from the
clustering method. Thus, clustering occurs at the data level instead of the knowledge
level, which prevent users from precisely identifying their targets and understanding
the clustering results. Although some existing clustering methods consider constraints
[11[4][16][17]1[19][21], they only consider very limited knowledge provided by users.
A more sophisticated and systematic framework is needed to support semantics in
clustering.

An ontology is a formal explicit specification of a shared conceptualization. It
provides domain knowledge relevant to the conceptualization and axioms for
reasoning with it.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 205-216, 2005.
© Springer-Verlag Berlin Heidelberg 2005

206 X. Wang and H.J. Hamilton

In this paper, we do not discuss how an ontology can be generated from the web
or other resources. We assume that an ontology already exists and has been
represented in an ontology language. Based on this assumption, we propose a
framework ONTO_CLUST for ontology-based spatial clustering. The framework
provides a template for performing spatial clustering using the following steps. First,
the spatial clustering ontology is represented in a web ontology language. Secondly,
the user’s goal is translated into queries that perform reasoning on the ontology.
Relevant algorithms and spatial data sets are selected and instantiated from the
ontology with respect to the user’s goal. Thirdly, the selected clustering algorithm
performs clustering based on the results produced from queries. Finally, the results
are explained through the ontology.

ONTO_CLUST is a framework to use an ontology to support spatial clustering.
The purpose of the framework is to guide a user to an appropriate selection of a
clustering algorithm and an appropriate interpretation of the results. At present, the
ontology is not used by the selected clustering algorithm. The advantages of the
framework are as follows. First, the user’s goal is given at the semantic level. The
user does not need to k